wxDai's picture
init
6b1e9f7
raw
history blame
3.78 kB
import torch
from mld.transforms.joints2rots import config
def gmof(x, sigma):
"""
Geman-McClure error function
"""
x_squared = x ** 2
sigma_squared = sigma ** 2
return (sigma_squared * x_squared) / (sigma_squared + x_squared)
def angle_prior(pose):
"""
Angle prior that penalizes unnatural bending of the knees and elbows
"""
# We subtract 3 because pose does not include the global rotation of the model
return torch.exp(
pose[:, [55 - 3, 58 - 3, 12 - 3, 15 - 3]] * torch.tensor([1., -1., -1, -1.], device=pose.device)) ** 2
def body_fitting_loss_3d(body_pose, preserve_pose,
betas, model_joints, camera_translation,
j3d, pose_prior,
joints3d_conf,
sigma=100, pose_prior_weight=4.78 * 1.5,
shape_prior_weight=5.0, angle_prior_weight=15.2,
joint_loss_weight=500.0,
pose_preserve_weight=0.0,
use_collision=False,
model_vertices=None, model_faces=None,
search_tree=None, pen_distance=None, filter_faces=None,
collision_loss_weight=1000
):
"""
Loss function for body fitting
"""
batch_size = body_pose.shape[0]
joint3d_error = gmof((model_joints + camera_translation) - j3d, sigma)
joint3d_loss_part = (joints3d_conf ** 2) * joint3d_error.sum(dim=-1)
joint3d_loss = ((joint_loss_weight ** 2) * joint3d_loss_part).sum(dim=-1)
# Pose prior loss
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)
# Angle prior for knees and elbows
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)
# Regularizer to prevent betas from taking large values
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)
collision_loss = 0.0
# Calculate the loss due to interpenetration
if use_collision:
triangles = torch.index_select(
model_vertices, 1,
model_faces).view(batch_size, -1, 3, 3)
with torch.no_grad():
collision_idxs = search_tree(triangles)
# Remove unwanted collisions
if filter_faces is not None:
collision_idxs = filter_faces(collision_idxs)
if collision_idxs.ge(0).sum().item() > 0:
collision_loss = torch.sum(collision_loss_weight * pen_distance(triangles, collision_idxs))
pose_preserve_loss = (pose_preserve_weight ** 2) * ((body_pose - preserve_pose) ** 2).sum(dim=-1)
total_loss = joint3d_loss + pose_prior_loss + angle_prior_loss + shape_prior_loss + collision_loss + pose_preserve_loss
return total_loss.sum()
def camera_fitting_loss_3d(model_joints, camera_t, camera_t_est,
j3d, joints_category="orig", depth_loss_weight=100.0):
"""
Loss function for camera optimization.
"""
model_joints = model_joints + camera_t
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
if joints_category == "orig":
select_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
elif joints_category == "AMASS":
select_joints_ind = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints]
else:
print("NO SUCH JOINTS CATEGORY!")
j3d_error_loss = (j3d[:, select_joints_ind] - model_joints[:, gt_joints_ind]) ** 2
# Loss that penalizes deviation from depth estimate
depth_loss = (depth_loss_weight ** 2) * (camera_t - camera_t_est) ** 2
total_loss = j3d_error_loss + depth_loss
return total_loss.sum()