|
|
|
import os |
|
import argparse |
|
import pickle |
|
|
|
import h5py |
|
import natsort |
|
import smplx |
|
|
|
import torch |
|
|
|
from mld.transforms.joints2rots import config |
|
from mld.transforms.joints2rots.smplify import SMPLify3D |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--pkl", type=str, default=None, help="pkl motion file") |
|
parser.add_argument("--dir", type=str, default=None, help="pkl motion folder") |
|
parser.add_argument("--num_smplify_iters", type=int, default=150, help="num of smplify iters") |
|
parser.add_argument("--cuda", type=bool, default=True, help="enables cuda") |
|
parser.add_argument("--gpu_ids", type=int, default=0, help="choose gpu ids") |
|
parser.add_argument("--num_joints", type=int, default=22, help="joint number") |
|
parser.add_argument("--joint_category", type=str, default="AMASS", help="use correspondence") |
|
parser.add_argument("--fix_foot", type=str, default="False", help="fix foot or not") |
|
opt = parser.parse_args() |
|
print(opt) |
|
|
|
if opt.pkl: |
|
paths = [opt.pkl] |
|
elif opt.dir: |
|
paths = [] |
|
file_list = natsort.natsorted(os.listdir(opt.dir)) |
|
for item in file_list: |
|
if item.endswith('.pkl') and not item.endswith("_mesh.pkl"): |
|
paths.append(os.path.join(opt.dir, item)) |
|
else: |
|
raise ValueError(f'{opt.pkl} and {opt.dir} are both None!') |
|
|
|
for path in paths: |
|
|
|
if os.path.exists(path.replace('.pkl', '_mesh.pkl')): |
|
print(f"{path} is rendered! skip!") |
|
continue |
|
|
|
with open(path, 'rb') as f: |
|
data = pickle.load(f) |
|
|
|
joints = data['joints'] |
|
|
|
device = torch.device("cuda:" + str(opt.gpu_ids) if opt.cuda else "cpu") |
|
print(config.SMPL_MODEL_DIR) |
|
smplxmodel = smplx.create( |
|
config.SMPL_MODEL_DIR, |
|
model_type="smpl", |
|
gender="neutral", |
|
ext="pkl", |
|
batch_size=joints.shape[0], |
|
).to(device) |
|
|
|
|
|
smpl_mean_file = config.SMPL_MEAN_FILE |
|
|
|
file = h5py.File(smpl_mean_file, "r") |
|
init_mean_pose = ( |
|
torch.from_numpy(file["pose"][:]) |
|
.unsqueeze(0).repeat(joints.shape[0], 1) |
|
.float() |
|
.to(device) |
|
) |
|
init_mean_shape = ( |
|
torch.from_numpy(file["shape"][:]) |
|
.unsqueeze(0).repeat(joints.shape[0], 1) |
|
.float() |
|
.to(device) |
|
) |
|
cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).unsqueeze(0).to(device) |
|
|
|
|
|
smplify = SMPLify3D( |
|
smplxmodel=smplxmodel, |
|
batch_size=joints.shape[0], |
|
joints_category=opt.joint_category, |
|
num_iters=opt.num_smplify_iters, |
|
device=device, |
|
) |
|
print("initialize SMPLify3D done!") |
|
|
|
print("Start SMPLify!") |
|
keypoints_3d = torch.Tensor(joints).to(device).float() |
|
|
|
if opt.joint_category == "AMASS": |
|
confidence_input = torch.ones(opt.num_joints) |
|
|
|
if opt.fix_foot: |
|
confidence_input[7] = 1.5 |
|
confidence_input[8] = 1.5 |
|
confidence_input[10] = 1.5 |
|
confidence_input[11] = 1.5 |
|
else: |
|
print("Such category not settle down!") |
|
|
|
|
|
( |
|
new_opt_vertices, |
|
new_opt_joints, |
|
new_opt_pose, |
|
new_opt_betas, |
|
new_opt_cam_t, |
|
new_opt_joint_loss, |
|
) = smplify( |
|
init_mean_pose.detach(), |
|
init_mean_shape.detach(), |
|
cam_trans_zero.detach(), |
|
keypoints_3d, |
|
conf_3d=confidence_input.to(device) |
|
) |
|
|
|
|
|
betas = torch.zeros_like(new_opt_betas) |
|
root = keypoints_3d[:, 0, :] |
|
|
|
output = smplxmodel( |
|
betas=betas, |
|
global_orient=new_opt_pose[:, :3], |
|
body_pose=new_opt_pose[:, 3:], |
|
transl=root, |
|
return_verts=True, |
|
) |
|
vertices = output.vertices.detach().cpu().numpy() |
|
data['vertices'] = vertices |
|
|
|
save_file = path.replace('.pkl', '_mesh.pkl') |
|
with open(save_file, 'wb') as f: |
|
pickle.dump(data, f) |
|
print(f'vertices saved in {save_file}') |
|
|