Framer / models_diffusers /unet_spatio_temporal_condition.py
wwen1997's picture
Upload 13 files
7615afe verified
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
from einops import rearrange
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import BaseOutput, logging
# from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from models_diffusers.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
# from diffusers.models.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
import inspect
import itertools
import os
import re
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Tuple, Union
from diffusers import __version__
from diffusers.utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
FLAX_WEIGHTS_NAME,
HF_HUB_OFFLINE,
MIN_PEFT_VERSION,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
_add_variant,
_get_model_file,
check_peft_version,
deprecate,
is_accelerate_available,
is_torch_version,
logging,
)
from diffusers.utils.hub_utils import PushToHubMixin
from diffusers.models.modeling_utils import load_model_dict_into_meta, load_state_dict
if is_torch_version(">=", "1.9.0"):
_LOW_CPU_MEM_USAGE_DEFAULT = True
else:
_LOW_CPU_MEM_USAGE_DEFAULT = False
if is_accelerate_available():
import accelerate
from accelerate.utils import set_module_tensor_to_device
from accelerate.utils.versions import is_torch_version
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNetSpatioTemporalConditionOutput(BaseOutput):
"""
The output of [`UNetSpatioTemporalConditionModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor = None
intermediate_features: Optional[Tuple[torch.FloatTensor]] = None
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
r"""
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample.
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
The tuple of downsample blocks to use.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
The tuple of upsample blocks to use.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
addition_time_embed_dim: (`int`, defaults to 256):
Dimension to to encode the additional time ids.
projection_class_embeddings_input_dim (`int`, defaults to 768):
The dimension of the projection of encoded `added_time_ids`.
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
The number of attention heads.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 8,
out_channels: int = 4,
down_block_types: Tuple[str] = (
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"DownBlockSpatioTemporal",
),
up_block_types: Tuple[str] = (
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
),
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
addition_time_embed_dim: int = 256,
projection_class_embeddings_input_dim: int = 768,
layers_per_block: Union[int, Tuple[int]] = 2,
cross_attention_dim: Union[int, Tuple[int]] = 1024,
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20),
num_frames: int = 25,
):
super().__init__()
self.sample_size = sample_size
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
)
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
)
self.mask_token = nn.Parameter(torch.randn(1, 1, 4, 1, 1))
# input
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
padding=1,
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
if isinstance(cross_attention_dim, int):
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
if isinstance(layers_per_block, int):
layers_per_block = [layers_per_block] * len(down_block_types)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
blocks_time_embed_dim = time_embed_dim
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block[i],
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=blocks_time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=1e-5,
cross_attention_dim=cross_attention_dim[i],
num_attention_heads=num_attention_heads[i],
resnet_act_fn="silu",
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlockSpatioTemporal(
block_out_channels[-1],
temb_channels=blocks_time_embed_dim,
transformer_layers_per_block=transformer_layers_per_block[-1],
cross_attention_dim=cross_attention_dim[-1],
num_attention_heads=num_attention_heads[-1],
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
reversed_layers_per_block = list(reversed(layers_per_block))
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=reversed_layers_per_block[i] + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=blocks_time_embed_dim,
add_upsample=add_upsample,
resnet_eps=1e-5,
resolution_idx=i,
cross_attention_dim=reversed_cross_attention_dim[i],
num_attention_heads=reversed_num_attention_heads[i],
resnet_act_fn="silu",
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(
block_out_channels[0],
out_channels,
kernel_size=3,
padding=1,
)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
added_time_ids: torch.Tensor,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, # for t2i-adaptor or controlnet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for controlnet
return_dict: bool = True,
# return_intermediate_features: bool = False,
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
r"""
The [`UNetSpatioTemporalConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
added_time_ids: (`torch.FloatTensor`):
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
embeddings and added to the time embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
tuple.
Returns:
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
batch_size, num_frames = sample.shape[:2]
timesteps = timesteps.expand(batch_size)
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
time_embeds = self.add_time_proj(added_time_ids.flatten())
time_embeds = time_embeds.reshape((batch_size, -1))
time_embeds = time_embeds.to(emb.dtype)
aug_emb = self.add_embedding(time_embeds)
emb = emb + aug_emb
# Flatten the batch and frames dimensions
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
sample = sample.flatten(0, 1)
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb.repeat_interleave(num_frames, dim=0)
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
# 2. pre-process
sample = self.conv_in(sample)
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
is_adapter = is_controlnet = False
if (down_block_additional_residuals is not None):
if (mid_block_additional_residual is not None):
is_controlnet = True
else:
is_adapter = True
down_block_res_samples = (sample,)
for block_idx, downsample_block in enumerate(self.down_blocks):
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
# print('has_cross_attention', type(downsample_block))
# models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal
additional_residuals = {}
if is_adapter and len(down_block_additional_residuals) > 0:
additional_residuals['additional_residuals'] = down_block_additional_residuals.pop(0)
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
**additional_residuals,
)
else:
# print('no_cross_attention', type(downsample_block))
# models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
image_only_indicator=image_only_indicator,
)
if is_adapter and len(down_block_additional_residuals) > 0:
additional_residuals = down_block_additional_residuals.pop(0)
if sample.dim() == 5:
additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=sample.shape[0])
sample = sample + additional_residuals
down_block_res_samples += res_samples
if is_controlnet:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(down_block_res_samples, down_block_additional_residuals):
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
sample = self.mid_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
if is_controlnet:
sample = sample + mid_block_additional_residual
# if return_intermediate_features:
intermediate_features = []
# 5. up
for block_idx, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
image_only_indicator=image_only_indicator,
)
# if return_intermediate_features:
intermediate_features.append(sample)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
# 7. Reshape back to original shape
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
if not return_dict:
return (sample, intermediate_features)
return UNetSpatioTemporalConditionOutput(
sample=sample,
intermediate_features=intermediate_features,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], custom_resume=False, **kwargs):
r"""
Instantiate a pretrained PyTorch model from a pretrained model configuration.
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
train the model, set it back in training mode with `model.train()`.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`~ModelMixin.save_pretrained`].
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info (`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
from_flax (`bool`, *optional*, defaults to `False`):
Load the model weights from a Flax checkpoint save file.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if `device_map` contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
variant (`str`, *optional*):
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
weights. If set to `False`, `safetensors` weights are not loaded.
<Tip>
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`. You can also activate the special
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
firewalled environment.
</Tip>
Example:
```py
from diffusers import UNet2DConditionModel
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
```
If you get the error message below, you need to finetune the weights for your downstream task:
```bash
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
"""
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
force_download = kwargs.pop("force_download", False)
from_flax = kwargs.pop("from_flax", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
subfolder = kwargs.pop("subfolder", None)
device_map = kwargs.pop("device_map", None)
max_memory = kwargs.pop("max_memory", None)
offload_folder = kwargs.pop("offload_folder", None)
offload_state_dict = kwargs.pop("offload_state_dict", False)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_accelerate_available():
raise NotImplementedError(
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
" `device_map=None`. You can install accelerate with `pip install accelerate`."
)
# Check if we can handle device_map and dispatching the weights
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
# Load config if we don't provide a configuration
config_path = pretrained_model_name_or_path
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "pytorch",
}
# load config
config, unused_kwargs, commit_hash = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
return_commit_hash=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
user_agent=user_agent,
**kwargs,
)
if not custom_resume:
# NOTE: update in_channels, for additional mask concatentation
config['in_channels'] = config['in_channels'] + 1
# load model
model_file = None
if from_flax:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=FLAX_WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
model = cls.from_config(config, **unused_kwargs)
# Convert the weights
from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
model = load_flax_checkpoint_in_pytorch_model(model, model_file)
else:
if use_safetensors:
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
except IOError as e:
if not allow_pickle:
raise e
pass
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
if low_cpu_mem_usage:
# Instantiate model with empty weights
with accelerate.init_empty_weights():
model = cls.from_config(config, **unused_kwargs)
# if device_map is None, load the state dict and move the params from meta device to the cpu
if device_map is None:
param_device = "cpu"
state_dict = load_state_dict(model_file, variant=variant)
if not custom_resume:
# NOTE update conv_in_weight
conv_in_weight = state_dict['conv_in.weight']
assert conv_in_weight.shape == (320, 8, 3, 3)
conv_in_weight_new = torch.randn(320, 9, 3, 3).to(conv_in_weight.device).to(conv_in_weight.dtype)
conv_in_weight_new[:, :8, :, :] = conv_in_weight
state_dict['conv_in.weight'] = conv_in_weight_new
# NOTE add mask_token
mask_token = torch.randn(1, 1, 4, 1, 1).to(conv_in_weight.device).to(conv_in_weight.dtype)
state_dict["mask_token"] = mask_token
model._convert_deprecated_attention_blocks(state_dict)
# move the params from meta device to cpu
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
if len(missing_keys) > 0:
raise ValueError(
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
" those weights or else make sure your checkpoint file is correct."
)
unexpected_keys = load_model_dict_into_meta(
model,
state_dict,
device=param_device,
dtype=torch_dtype,
model_name_or_path=pretrained_model_name_or_path,
)
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warn(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by default the device_map is None and the weights are loaded on the CPU
try:
accelerate.load_checkpoint_and_dispatch(
model,
model_file,
device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
)
except AttributeError as e:
# When using accelerate loading, we do not have the ability to load the state
# dict and rename the weight names manually. Additionally, accelerate skips
# torch loading conventions and directly writes into `module.{_buffers, _parameters}`
# (which look like they should be private variables?), so we can't use the standard hooks
# to rename parameters on load. We need to mimic the original weight names so the correct
# attributes are available. After we have loaded the weights, we convert the deprecated
# names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
# the weights so we don't have to do this again.
if "'Attention' object has no attribute" in str(e):
logger.warn(
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
" please also re-upload it or open a PR on the original repository."
)
model._temp_convert_self_to_deprecated_attention_blocks()
accelerate.load_checkpoint_and_dispatch(
model,
model_file,
device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
)
model._undo_temp_convert_self_to_deprecated_attention_blocks()
else:
raise e
loading_info = {
"missing_keys": [],
"unexpected_keys": [],
"mismatched_keys": [],
"error_msgs": [],
}
else:
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file, variant=variant)
model._convert_deprecated_attention_blocks(state_dict)
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
model,
state_dict,
model_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=ignore_mismatched_sizes,
)
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
"error_msgs": error_msgs,
}
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
raise ValueError(
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
)
elif torch_dtype is not None:
model = model.to(torch_dtype)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
return model, loading_info
return model