mcphub / src /services /vectorSearchService.ts
wuran's picture
Upload folder using huggingface_hub
eb846d0 verified
import { getRepositoryFactory } from '../db/index.js';
import { VectorEmbeddingRepository } from '../db/repositories/index.js';
import { ToolInfo } from '../types/index.js';
import { getAppDataSource, initializeDatabase } from '../db/connection.js';
import { getSmartRoutingConfig } from '../utils/smartRouting.js';
import OpenAI from 'openai';
// Get OpenAI configuration from smartRouting settings or fallback to environment variables
const getOpenAIConfig = () => {
const smartRoutingConfig = getSmartRoutingConfig();
return {
apiKey: smartRoutingConfig.openaiApiKey,
baseURL: smartRoutingConfig.openaiApiBaseUrl,
embeddingModel: smartRoutingConfig.openaiApiEmbeddingModel,
};
};
// Constants for embedding models
const EMBEDDING_DIMENSIONS = 1536; // OpenAI's text-embedding-3-small outputs 1536 dimensions
const BGE_DIMENSIONS = 1024; // BAAI/bge-m3 outputs 1024 dimensions
const FALLBACK_DIMENSIONS = 100; // Fallback implementation uses 100 dimensions
// Get dimensions for a model
const getDimensionsForModel = (model: string): number => {
if (model.includes('bge-m3')) {
return BGE_DIMENSIONS;
} else if (model.includes('text-embedding-3')) {
return EMBEDDING_DIMENSIONS;
} else if (model === 'fallback' || model === 'simple-hash') {
return FALLBACK_DIMENSIONS;
}
// Default to OpenAI dimensions
return EMBEDDING_DIMENSIONS;
};
// Initialize the OpenAI client with smartRouting configuration
const getOpenAIClient = () => {
const config = getOpenAIConfig();
return new OpenAI({
apiKey: config.apiKey, // Get API key from smartRouting settings or environment variables
baseURL: config.baseURL, // Get base URL from smartRouting settings or fallback to default
});
};
/**
* Generate text embedding using OpenAI's embedding model
*
* NOTE: embeddings are 1536 dimensions by default.
* If you previously used the fallback implementation (100 dimensions),
* you may need to rebuild your vector database indices after switching.
*
* @param text Text to generate embeddings for
* @returns Promise with vector embedding as number array
*/
async function generateEmbedding(text: string): Promise<number[]> {
try {
const config = getOpenAIConfig();
const openai = getOpenAIClient();
// Check if API key is configured
if (!openai.apiKey) {
console.warn('OpenAI API key is not configured. Using fallback embedding method.');
return generateFallbackEmbedding(text);
}
// Truncate text if it's too long (OpenAI has token limits)
const truncatedText = text.length > 8000 ? text.substring(0, 8000) : text;
// Call OpenAI's embeddings API
const response = await openai.embeddings.create({
model: config.embeddingModel, // Modern model with better performance
input: truncatedText,
});
// Return the embedding
return response.data[0].embedding;
} catch (error) {
console.error('Error generating embedding:', error);
console.warn('Falling back to simple embedding method');
return generateFallbackEmbedding(text);
}
}
/**
* Fallback embedding function using a simple approach when OpenAI API is unavailable
* @param text Text to generate embeddings for
* @returns Vector embedding as number array
*/
function generateFallbackEmbedding(text: string): number[] {
const words = text.toLowerCase().split(/\s+/);
const vocabulary = [
'search',
'find',
'get',
'fetch',
'retrieve',
'query',
'map',
'location',
'weather',
'file',
'directory',
'email',
'message',
'send',
'create',
'update',
'delete',
'browser',
'web',
'page',
'click',
'navigate',
'screenshot',
'automation',
'database',
'table',
'record',
'insert',
'select',
'schema',
'data',
'image',
'photo',
'video',
'media',
'upload',
'download',
'convert',
'text',
'document',
'pdf',
'excel',
'word',
'format',
'parse',
'api',
'rest',
'http',
'request',
'response',
'json',
'xml',
'time',
'date',
'calendar',
'schedule',
'reminder',
'clock',
'math',
'calculate',
'number',
'sum',
'average',
'statistics',
'user',
'account',
'login',
'auth',
'permission',
'role',
];
// Create vector with fallback dimensions
const vector = new Array(FALLBACK_DIMENSIONS).fill(0);
words.forEach((word) => {
const index = vocabulary.indexOf(word);
if (index >= 0 && index < vector.length) {
vector[index] += 1;
}
// Add some randomness based on word hash
const hash = word.split('').reduce((a, b) => a + b.charCodeAt(0), 0);
vector[hash % vector.length] += 0.1;
});
// Normalize the vector
const magnitude = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0));
if (magnitude > 0) {
return vector.map((val) => val / magnitude);
}
return vector;
}
/**
* Save tool information as vector embeddings
* @param serverName Server name
* @param tools Array of tools to save
*/
export const saveToolsAsVectorEmbeddings = async (
serverName: string,
tools: ToolInfo[],
): Promise<void> => {
try {
const config = getOpenAIConfig();
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
for (const tool of tools) {
// Create searchable text from tool information
const searchableText = [
tool.name,
tool.description,
// Include input schema properties if available
...(tool.inputSchema && typeof tool.inputSchema === 'object'
? Object.keys(tool.inputSchema).filter((key) => key !== 'type' && key !== 'properties')
: []),
// Include schema property names if available
...(tool.inputSchema &&
tool.inputSchema.properties &&
typeof tool.inputSchema.properties === 'object'
? Object.keys(tool.inputSchema.properties)
: []),
]
.filter(Boolean)
.join(' ');
try {
// Generate embedding
const embedding = await generateEmbedding(searchableText);
// Check database compatibility before saving
await checkDatabaseVectorDimensions(embedding.length);
// Save embedding
await vectorRepository.saveEmbedding(
'tool',
`${serverName}:${tool.name}`,
searchableText,
embedding,
{
serverName,
toolName: tool.name,
description: tool.description,
inputSchema: tool.inputSchema,
},
config.embeddingModel, // Store the model used for this embedding
);
} catch (toolError) {
console.error(`Error processing tool ${tool.name} for server ${serverName}:`, toolError);
// Continue with the next tool rather than failing the whole batch
}
}
console.log(`Saved ${tools.length} tool embeddings for server: ${serverName}`);
} catch (error) {
console.error(`Error saving tool embeddings for server ${serverName}:`, error);
}
};
/**
* Search for tools using vector similarity
* @param query Search query text
* @param limit Maximum number of results to return
* @param threshold Similarity threshold (0-1)
* @param serverNames Optional array of server names to filter by
*/
export const searchToolsByVector = async (
query: string,
limit: number = 10,
threshold: number = 0.7,
serverNames?: string[],
): Promise<
Array<{
serverName: string;
toolName: string;
description: string;
inputSchema: any;
similarity: number;
searchableText: string;
}>
> => {
try {
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
// Search by text using vector similarity
const results = await vectorRepository.searchByText(
query,
generateEmbedding,
limit,
threshold,
['tool'],
);
// Filter by server names if provided
let filteredResults = results;
if (serverNames && serverNames.length > 0) {
filteredResults = results.filter((result) => {
if (typeof result.embedding.metadata === 'string') {
try {
const parsedMetadata = JSON.parse(result.embedding.metadata);
return serverNames.includes(parsedMetadata.serverName);
} catch (error) {
return false;
}
}
return false;
});
}
// Transform results to a more useful format
return filteredResults.map((result) => {
// Check if we have metadata as a string that needs to be parsed
if (result.embedding?.metadata && typeof result.embedding.metadata === 'string') {
try {
// Parse the metadata string as JSON
const parsedMetadata = JSON.parse(result.embedding.metadata);
if (parsedMetadata.serverName && parsedMetadata.toolName) {
// We have properly structured metadata
return {
serverName: parsedMetadata.serverName,
toolName: parsedMetadata.toolName,
description: parsedMetadata.description || '',
inputSchema: parsedMetadata.inputSchema || {},
similarity: result.similarity,
searchableText: result.embedding.text_content,
};
}
} catch (error) {
console.error('Error parsing metadata string:', error);
// Fall through to the extraction logic below
}
}
// Extract tool info from text_content if metadata is not available or parsing failed
const textContent = result.embedding?.text_content || '';
// Extract toolName (first word of text_content)
const toolNameMatch = textContent.match(/^(\S+)/);
const toolName = toolNameMatch ? toolNameMatch[1] : '';
// Extract serverName from toolName if it follows the pattern "serverName_toolPart"
const serverNameMatch = toolName.match(/^([^_]+)_/);
const serverName = serverNameMatch ? serverNameMatch[1] : 'unknown';
// Extract description (everything after the first word)
const description = textContent.replace(/^\S+\s*/, '').trim();
return {
serverName,
toolName,
description,
inputSchema: {},
similarity: result.similarity,
searchableText: textContent,
};
});
} catch (error) {
console.error('Error searching tools by vector:', error);
return [];
}
};
/**
* Get all available tools in vector database
* @param serverNames Optional array of server names to filter by
*/
export const getAllVectorizedTools = async (
serverNames?: string[],
): Promise<
Array<{
serverName: string;
toolName: string;
description: string;
inputSchema: any;
}>
> => {
try {
const config = getOpenAIConfig();
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
// Try to determine what dimension our database is using
let dimensionsToUse = getDimensionsForModel(config.embeddingModel); // Default based on the model selected
try {
const result = await getAppDataSource().query(`
SELECT atttypmod as dimensions
FROM pg_attribute
WHERE attrelid = 'vector_embeddings'::regclass
AND attname = 'embedding'
`);
if (result && result.length > 0 && result[0].dimensions) {
const rawValue = result[0].dimensions;
if (rawValue === -1) {
// No type modifier specified
dimensionsToUse = getDimensionsForModel(config.embeddingModel);
} else {
// For this version of pgvector, atttypmod stores the dimension value directly
dimensionsToUse = rawValue;
}
}
} catch (error: any) {
console.warn('Could not determine vector dimensions from database:', error?.message);
}
// Get all tool embeddings
const results = await vectorRepository.searchSimilar(
new Array(dimensionsToUse).fill(0), // Zero vector with dimensions matching the database
1000, // Large limit
-1, // No threshold (get all)
['tool'],
);
// Filter by server names if provided
let filteredResults = results;
if (serverNames && serverNames.length > 0) {
filteredResults = results.filter((result) => {
if (typeof result.embedding.metadata === 'string') {
try {
const parsedMetadata = JSON.parse(result.embedding.metadata);
return serverNames.includes(parsedMetadata.serverName);
} catch (error) {
return false;
}
}
return false;
});
}
// Transform results
return filteredResults.map((result) => {
if (typeof result.embedding.metadata === 'string') {
try {
const parsedMetadata = JSON.parse(result.embedding.metadata);
return {
serverName: parsedMetadata.serverName,
toolName: parsedMetadata.toolName,
description: parsedMetadata.description,
inputSchema: parsedMetadata.inputSchema,
};
} catch (error) {
console.error('Error parsing metadata string:', error);
return {
serverName: 'unknown',
toolName: 'unknown',
description: '',
inputSchema: {},
};
}
}
return {
serverName: 'unknown',
toolName: 'unknown',
description: '',
inputSchema: {},
};
});
} catch (error) {
console.error('Error getting all vectorized tools:', error);
return [];
}
};
/**
* Remove tool embeddings for a server
* @param serverName Server name
*/
export const removeServerToolEmbeddings = async (serverName: string): Promise<void> => {
try {
const vectorRepository = getRepositoryFactory(
'vectorEmbeddings',
)() as VectorEmbeddingRepository;
// Note: This would require adding a delete method to VectorEmbeddingRepository
// For now, we'll log that this functionality needs to be implemented
console.log(`TODO: Remove tool embeddings for server: ${serverName}`);
} catch (error) {
console.error(`Error removing tool embeddings for server ${serverName}:`, error);
}
};
/**
* Sync all server tools embeddings when smart routing is first enabled
* This function will scan all currently connected servers and save their tools as vector embeddings
*/
export const syncAllServerToolsEmbeddings = async (): Promise<void> => {
try {
console.log('Starting synchronization of all server tools embeddings...');
// Import getServersInfo to get all server information
const { getServersInfo } = await import('./mcpService.js');
const servers = getServersInfo();
let totalToolsSynced = 0;
let serversSynced = 0;
for (const server of servers) {
if (server.status === 'connected' && server.tools && server.tools.length > 0) {
try {
console.log(`Syncing tools for server: ${server.name} (${server.tools.length} tools)`);
await saveToolsAsVectorEmbeddings(server.name, server.tools);
totalToolsSynced += server.tools.length;
serversSynced++;
} catch (error) {
console.error(`Failed to sync tools for server ${server.name}:`, error);
}
} else if (server.status === 'connected' && (!server.tools || server.tools.length === 0)) {
console.log(`Server ${server.name} is connected but has no tools to sync`);
} else {
console.log(`Skipping server ${server.name} (status: ${server.status})`);
}
}
console.log(
`Smart routing tools sync completed: synced ${totalToolsSynced} tools from ${serversSynced} servers`,
);
} catch (error) {
console.error('Error during smart routing tools synchronization:', error);
throw error;
}
};
/**
* Check database vector dimensions and ensure compatibility
* @param dimensionsNeeded The number of dimensions required
* @returns Promise that resolves when check is complete
*/
async function checkDatabaseVectorDimensions(dimensionsNeeded: number): Promise<void> {
try {
// First check if database is initialized
if (!getAppDataSource().isInitialized) {
console.info('Database not initialized, initializing...');
await initializeDatabase();
}
// Check current vector dimension in the database
// First try to get vector type info directly
let vectorTypeInfo;
try {
vectorTypeInfo = await getAppDataSource().query(`
SELECT
atttypmod,
format_type(atttypid, atttypmod) as formatted_type
FROM pg_attribute
WHERE attrelid = 'vector_embeddings'::regclass
AND attname = 'embedding'
`);
} catch (error) {
console.warn('Could not get vector type info, falling back to atttypmod query');
}
// Fallback to original query
const result = await getAppDataSource().query(`
SELECT atttypmod as dimensions
FROM pg_attribute
WHERE attrelid = 'vector_embeddings'::regclass
AND attname = 'embedding'
`);
let currentDimensions = 0;
// Parse dimensions from result
if (result && result.length > 0 && result[0].dimensions) {
if (vectorTypeInfo && vectorTypeInfo.length > 0) {
// Try to extract dimensions from formatted type like "vector(1024)"
const match = vectorTypeInfo[0].formatted_type?.match(/vector\((\d+)\)/);
if (match) {
currentDimensions = parseInt(match[1]);
}
}
// If we couldn't extract from formatted type, use the atttypmod value directly
if (currentDimensions === 0) {
const rawValue = result[0].dimensions;
if (rawValue === -1) {
// No type modifier specified
currentDimensions = 0;
} else {
// For this version of pgvector, atttypmod stores the dimension value directly
currentDimensions = rawValue;
}
}
}
// Also check the dimensions stored in actual records for validation
try {
const recordCheck = await getAppDataSource().query(`
SELECT dimensions, model, COUNT(*) as count
FROM vector_embeddings
GROUP BY dimensions, model
ORDER BY count DESC
LIMIT 5
`);
if (recordCheck && recordCheck.length > 0) {
// If we couldn't determine dimensions from schema, use the most common dimension from records
if (currentDimensions === 0 && recordCheck[0].dimensions) {
currentDimensions = recordCheck[0].dimensions;
}
}
} catch (error) {
console.warn('Could not check dimensions from actual records:', error);
}
// If no dimensions are set or they don't match what we need, handle the mismatch
if (currentDimensions === 0 || currentDimensions !== dimensionsNeeded) {
console.log(
`Vector dimensions mismatch: database=${currentDimensions}, needed=${dimensionsNeeded}`,
);
if (currentDimensions === 0) {
console.log('Setting up vector dimensions for the first time...');
} else {
console.log('Dimension mismatch detected. Clearing existing incompatible vector data...');
// Clear all existing vector embeddings with mismatched dimensions
await clearMismatchedVectorData(dimensionsNeeded);
}
// Drop any existing indices first
await getAppDataSource().query(`DROP INDEX IF EXISTS idx_vector_embeddings_embedding;`);
// Alter the column type with the new dimensions
await getAppDataSource().query(`
ALTER TABLE vector_embeddings
ALTER COLUMN embedding TYPE vector(${dimensionsNeeded});
`);
// Create a new index with better error handling
try {
await getAppDataSource().query(`
CREATE INDEX idx_vector_embeddings_embedding
ON vector_embeddings USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
`);
} catch (indexError: any) {
// If the index already exists (code 42P07) or there's a duplicate key constraint (code 23505),
// it's not a critical error as the index is already there
if (indexError.code === '42P07' || indexError.code === '23505') {
console.log('Index already exists, continuing...');
} else {
console.warn('Warning: Failed to create index, but continuing:', indexError.message);
}
}
console.log(`Successfully configured vector dimensions to ${dimensionsNeeded}`);
}
} catch (error: any) {
console.error('Error checking/updating vector dimensions:', error);
throw new Error(`Vector dimension check failed: ${error?.message || 'Unknown error'}`);
}
}
/**
* Clear vector embeddings with mismatched dimensions
* @param expectedDimensions The expected dimensions
* @returns Promise that resolves when cleanup is complete
*/
async function clearMismatchedVectorData(expectedDimensions: number): Promise<void> {
try {
console.log(
`Clearing vector embeddings with dimensions different from ${expectedDimensions}...`,
);
// Delete all embeddings that don't match the expected dimensions
await getAppDataSource().query(
`
DELETE FROM vector_embeddings
WHERE dimensions != $1
`,
[expectedDimensions],
);
console.log('Successfully cleared mismatched vector embeddings');
} catch (error: any) {
console.error('Error clearing mismatched vector data:', error);
throw error;
}
}