|
import cv2 |
|
import numpy as np |
|
import os |
|
import trimesh |
|
import argparse |
|
import torch |
|
import scipy |
|
from PIL import Image |
|
|
|
from refine.mesh_refine import geo_refine |
|
from refine.func import make_star_cameras_orthographic |
|
from refine.render import NormalsRenderer, calc_vertex_normals |
|
|
|
from pytorch3d.structures import Meshes |
|
from sklearn.neighbors import KDTree |
|
|
|
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fix_vert_color_glb(mesh_path): |
|
from pygltflib import GLTF2, Material, PbrMetallicRoughness |
|
obj1 = GLTF2().load(mesh_path) |
|
obj1.meshes[0].primitives[0].material = 0 |
|
obj1.materials.append(Material( |
|
pbrMetallicRoughness = PbrMetallicRoughness( |
|
baseColorFactor = [1.0, 1.0, 1.0, 1.0], |
|
metallicFactor = 0., |
|
roughnessFactor = 1.0, |
|
), |
|
emissiveFactor = [0.0, 0.0, 0.0], |
|
doubleSided = True, |
|
)) |
|
obj1.save(mesh_path) |
|
|
|
|
|
def srgb_to_linear(c_srgb): |
|
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4) |
|
return c_linear.clip(0, 1.) |
|
|
|
|
|
import trimesh |
|
import numpy as np |
|
from pytorch3d.structures import Meshes |
|
from pytorch3d.renderer import TexturesUV |
|
|
|
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True): |
|
|
|
vertices = meshes.verts_packed().cpu().float().numpy() |
|
triangles = meshes.faces_packed().cpu().long().numpy() |
|
|
|
|
|
if isinstance(meshes.textures, TexturesUV): |
|
|
|
verts_uvs = meshes.textures.verts_uvs_padded()[0].cpu().numpy() |
|
faces_uvs = meshes.textures.faces_uvs_padded()[0].cpu().numpy() |
|
texture_map = meshes.textures.maps_padded()[0].cpu().numpy() |
|
|
|
|
|
if apply_sRGB_to_LinearRGB: |
|
texture_map = srgb_to_linear(texture_map) |
|
texture_map = np.clip(texture_map, 0, 1) |
|
material = trimesh.visual.texture.SimpleMaterial(image=texture_data, diffuse=(255, 255, 255)) |
|
|
|
|
|
mesh = trimesh.Trimesh( |
|
vertices=vertices, |
|
faces=triangles, |
|
visual=trimesh.visual.TextureVisuals( |
|
uv=verts_uvs, |
|
image=texture_map, |
|
material=material |
|
) |
|
) |
|
else: |
|
|
|
np_color = meshes.textures.verts_features_packed().cpu().float().numpy() |
|
if apply_sRGB_to_LinearRGB: |
|
np_color = srgb_to_linear(np_color) |
|
np_color = np.clip(np_color, 0, 1) |
|
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color) |
|
|
|
|
|
if save_glb_path.endswith(".glb"): |
|
vertices[:, [0, 2]] = -vertices[:, [0, 2]] |
|
|
|
|
|
mesh.remove_unreferenced_vertices() |
|
|
|
|
|
mesh.export(save_glb_path) |
|
|
|
|
|
print(f"Saving to {save_glb_path}") |
|
|
|
|
|
def calc_horizontal_offset(target_img, source_img): |
|
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750 |
|
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750 |
|
best_offset = -114514 |
|
for offset in range(-200, 200): |
|
offset_mask = np.roll(source_mask, offset, axis=1) |
|
overlap = (target_mask & offset_mask).sum() |
|
if overlap > best_offset: |
|
best_offset = overlap |
|
best_offset_value = offset |
|
return best_offset_value |
|
|
|
|
|
def calc_horizontal_offset2(target_mask, source_img): |
|
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750 |
|
best_offset = -114514 |
|
for offset in range(-200, 200): |
|
offset_mask = np.roll(source_mask, offset, axis=1) |
|
overlap = (target_mask & offset_mask).sum() |
|
if overlap > best_offset: |
|
best_offset = overlap |
|
best_offset_value = offset |
|
return best_offset_value |
|
|
|
|
|
def get_distract_mask(color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20): |
|
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres |
|
if normal_0 is not None and normal_1 is not None: |
|
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres |
|
labeled_array, num_features = scipy.ndimage.label(distract_area) |
|
results = [] |
|
|
|
random_sampled_points = [] |
|
|
|
for i in range(num_features + 1): |
|
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000: |
|
results.append((i, np.sum(labeled_array == i))) |
|
|
|
points = np.argwhere(labeled_array == i) |
|
random_sampled_points.append(points[np.random.randint(0, points.shape[0])]) |
|
|
|
results = sorted(results, key=lambda x: x[1], reverse=True) |
|
distract_mask = np.zeros_like(distract_area) |
|
distract_bbox = np.zeros_like(distract_area) |
|
for i, _ in results: |
|
distract_mask |= labeled_array == i |
|
bbox = np.argwhere(labeled_array == i) |
|
min_x, min_y = bbox.min(axis=0) |
|
max_x, max_y = bbox.max(axis=0) |
|
distract_bbox[min_x:max_x, min_y:max_y] = 1 |
|
|
|
return distract_mask, distract_bbox, _, _ |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--input_mv_dir', type=str, default='result/multiview') |
|
parser.add_argument('--input_obj_dir', type=str, default='result/slrm') |
|
parser.add_argument('--output_dir', type=str, default='result/refined') |
|
parser.add_argument('--outside_ratio', type=float, default=0.20) |
|
parser.add_argument('--no_decompose', action='store_true') |
|
args = parser.parse_args() |
|
|
|
import time |
|
start_time = time.time() |
|
|
|
for test_idx in os.listdir(args.input_mv_dir): |
|
mv_root_dir = os.path.join(args.input_mv_dir, test_idx) |
|
obj_dir = os.path.join(args.input_obj_dir, test_idx) |
|
|
|
fixed_v, fixed_f = None, None |
|
flow_vert, flow_vector = None, None |
|
last_colors, last_normals = None, None |
|
last_front_color, last_front_normal = None, None |
|
distract_mask = None |
|
|
|
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2) |
|
mv = mv[[4, 3, 2, 0, 6, 5]] |
|
renderer = NormalsRenderer(mv,proj,(1024,1024)) |
|
|
|
if not args.no_decompose: |
|
for name_idx, level in zip([3, 1, 2], [2, 1, 0]): |
|
mesh = trimesh.load(obj_dir + f'_{name_idx}.obj') |
|
new_mesh = mesh.split(only_watertight=False) |
|
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ] |
|
mesh = trimesh.Scene(new_mesh).dump(concatenate=True) |
|
mesh_v, mesh_f = mesh.vertices, mesh.faces |
|
|
|
if last_colors is None: |
|
images = renderer.render( |
|
torch.tensor(mesh_v, device='cuda').float(), |
|
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(), |
|
torch.tensor(mesh_f, device='cuda'), |
|
) |
|
mask = (images[..., 3] < 0.9).cpu().numpy() |
|
|
|
colors, normals = [], [] |
|
for i in range(6): |
|
color_path = os.path.join(mv_root_dir, f'level{level}', f'color_{i}.png') |
|
normal_path = os.path.join(mv_root_dir, f'level{level}', f'normal_{i}.png') |
|
color = cv2.imread(color_path) |
|
normal = cv2.imread(normal_path) |
|
color = color[..., ::-1] |
|
normal = normal[..., ::-1] |
|
|
|
if last_colors is not None: |
|
offset = calc_horizontal_offset(np.array(last_colors[i]), color) |
|
|
|
else: |
|
offset = calc_horizontal_offset2(mask[i], color) |
|
|
|
|
|
if offset != 0: |
|
color = np.roll(color, offset, axis=1) |
|
normal = np.roll(normal, offset, axis=1) |
|
|
|
color = Image.fromarray(color) |
|
normal = Image.fromarray(normal) |
|
colors.append(color) |
|
normals.append(normal) |
|
|
|
if last_front_color is not None and level == 0: |
|
distract_mask, distract_bbox, _, _ = get_distract_mask(last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=args.outside_ratio) |
|
cv2.imwrite(f'{args.output_dir}/{test_idx}/distract_mask.png', distract_mask.astype(np.uint8) * 255) |
|
else: |
|
distract_mask = None |
|
distract_bbox = None |
|
|
|
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0 |
|
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0 |
|
|
|
if last_colors is None: |
|
from copy import deepcopy |
|
last_colors, last_normals = deepcopy(colors), deepcopy(normals) |
|
|
|
|
|
if fixed_v is not None and fixed_f is not None and level == 1: |
|
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f) |
|
|
|
fixed_v_cpu = fixed_v.cpu().numpy() |
|
kdtree_anchor = KDTree(fixed_v_cpu) |
|
kdtree_mesh_v = KDTree(mesh_v) |
|
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1) |
|
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25) |
|
idx_anchor = idx_anchor.squeeze() |
|
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] |
|
|
|
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1) |
|
neighbor_dists[neighbor_dists > 0.06] = 114514. |
|
neighbor_weights = torch.exp(-neighbor_dists * 1.) |
|
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True) |
|
anchors = fixed_v[idx_anchor] |
|
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] |
|
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01 |
|
vec_anchor = dis_anchor[:, None] * anchor_normals |
|
vec_anchor = vec_anchor[idx_mesh_v] |
|
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) |
|
mesh_v += weighted_vec_anchor.cpu().numpy() |
|
|
|
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f) |
|
|
|
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32) |
|
mesh_f = torch.tensor(mesh_f, device='cuda') |
|
|
|
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox) |
|
|
|
|
|
try: |
|
if fixed_v is not None and fixed_f is not None and level != 0: |
|
new_mesh_v = new_mesh.vertices.copy() |
|
|
|
fixed_v_cpu = fixed_v.cpu().numpy() |
|
kdtree_anchor = KDTree(fixed_v_cpu) |
|
kdtree_mesh_v = KDTree(new_mesh_v) |
|
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1) |
|
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25) |
|
idx_anchor = idx_anchor.squeeze() |
|
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] |
|
|
|
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1) |
|
neighbor_dists[neighbor_dists > 0.06] = 114514. |
|
neighbor_weights = torch.exp(-neighbor_dists * 1.) |
|
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True) |
|
anchors = fixed_v[idx_anchor] |
|
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] |
|
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01 |
|
vec_anchor = dis_anchor[:, None] * anchor_normals |
|
vec_anchor = vec_anchor[idx_mesh_v] |
|
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) |
|
new_mesh_v += weighted_vec_anchor.cpu().numpy() |
|
|
|
new_mesh.vertices = new_mesh_v |
|
|
|
except Exception as e: |
|
pass |
|
|
|
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True) |
|
new_mesh.export(f'{args.output_dir}/{test_idx}/out_{level}.glb') |
|
|
|
if fixed_v is None: |
|
fixed_v, fixed_f = simp_v, simp_f |
|
else: |
|
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0) |
|
fixed_v = torch.cat([fixed_v, simp_v], dim=0) |
|
|
|
|
|
|
|
print('finish', time.time() - start_time) |
|
|
|
|
|
else: |
|
mesh = trimesh.load(obj_dir + f'_0.obj') |
|
mesh_v, mesh_f = mesh.vertices, mesh.faces |
|
|
|
images = renderer.render( |
|
torch.tensor(mesh_v, device='cuda').float(), |
|
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(), |
|
torch.tensor(mesh_f, device='cuda'), |
|
) |
|
mask = (images[..., 3] < 0.9).cpu().numpy() |
|
|
|
colors, normals = [], [] |
|
for i in range(6): |
|
color_path = os.path.join(mv_root_dir, f'level0', f'color_{i}.png') |
|
normal_path = os.path.join(mv_root_dir, f'level0', f'normal_{i}.png') |
|
color = cv2.imread(color_path) |
|
normal = cv2.imread(normal_path) |
|
color = color[..., ::-1] |
|
normal = normal[..., ::-1] |
|
|
|
offset = calc_horizontal_offset2(mask[i], color) |
|
|
|
if offset != 0: |
|
color = np.roll(color, offset, axis=1) |
|
normal = np.roll(normal, offset, axis=1) |
|
|
|
color = Image.fromarray(color) |
|
normal = Image.fromarray(normal) |
|
colors.append(color) |
|
normals.append(normal) |
|
|
|
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32) |
|
mesh_f = torch.tensor(mesh_f, device='cuda') |
|
|
|
new_mesh, _, _ = geo_refine(mesh_v, mesh_f, colors, normals, no_decompose=True, expansion_weight=0.) |
|
|
|
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True) |
|
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_nodecomp.glb', apply_sRGB_to_LinearRGB=False) |
|
|