|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import xatlas | 
					
						
						|  | import trimesh | 
					
						
						|  | import cv2 | 
					
						
						|  | import numpy as np | 
					
						
						|  | import nvdiffrast.torch as dr | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath): | 
					
						
						|  |  | 
					
						
						|  | pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]]) | 
					
						
						|  | facenp_fx3 = facenp_fx3[:, [2, 1, 0]] | 
					
						
						|  |  | 
					
						
						|  | mesh = trimesh.Trimesh( | 
					
						
						|  | vertices=pointnp_px3, | 
					
						
						|  | faces=facenp_fx3, | 
					
						
						|  | vertex_colors=colornp_px3, | 
					
						
						|  | ) | 
					
						
						|  | mesh.export(fpath, 'obj') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath): | 
					
						
						|  |  | 
					
						
						|  | pointnp_px3 = pointnp_px3 @ np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) | 
					
						
						|  |  | 
					
						
						|  | mesh = trimesh.Trimesh( | 
					
						
						|  | vertices=pointnp_px3, | 
					
						
						|  | faces=facenp_fx3, | 
					
						
						|  | vertex_colors=colornp_px3, | 
					
						
						|  | ) | 
					
						
						|  | mesh.export(fpath, 'glb') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname): | 
					
						
						|  | import os | 
					
						
						|  | fol, na = os.path.split(fname) | 
					
						
						|  | na, _ = os.path.splitext(na) | 
					
						
						|  |  | 
					
						
						|  | matname = '%s/%s.mtl' % (fol, na) | 
					
						
						|  | fid = open(matname, 'w') | 
					
						
						|  | fid.write('newmtl material_0\n') | 
					
						
						|  | fid.write('Kd 1 1 1\n') | 
					
						
						|  | fid.write('Ka 0 0 0\n') | 
					
						
						|  | fid.write('Ks 0.4 0.4 0.4\n') | 
					
						
						|  | fid.write('Ns 10\n') | 
					
						
						|  | fid.write('illum 2\n') | 
					
						
						|  | fid.write('map_Kd %s.png\n' % na) | 
					
						
						|  | fid.close() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fid = open(fname, 'w') | 
					
						
						|  | fid.write('mtllib %s.mtl\n' % na) | 
					
						
						|  |  | 
					
						
						|  | for pidx, p in enumerate(pointnp_px3): | 
					
						
						|  | pp = p | 
					
						
						|  | fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2])) | 
					
						
						|  |  | 
					
						
						|  | for pidx, p in enumerate(tcoords_px2): | 
					
						
						|  | pp = p | 
					
						
						|  | fid.write('vt %f %f\n' % (pp[0], pp[1])) | 
					
						
						|  |  | 
					
						
						|  | fid.write('usemtl material_0\n') | 
					
						
						|  | for i, f in enumerate(facenp_fx3): | 
					
						
						|  | f1 = f + 1 | 
					
						
						|  | f2 = facetex_fx3[i] + 1 | 
					
						
						|  | fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) | 
					
						
						|  | fid.close() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lo, hi = 0, 1 | 
					
						
						|  | img = np.asarray(texmap_hxwx3, dtype=np.float32) | 
					
						
						|  | img = (img - lo) * (255 / (hi - lo)) | 
					
						
						|  | img = img.clip(0, 255) | 
					
						
						|  | mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True) | 
					
						
						|  | mask = (mask <= 3.0).astype(np.float32) | 
					
						
						|  | kernel = np.ones((3, 3), 'uint8') | 
					
						
						|  | dilate_img = cv2.dilate(img, kernel, iterations=1) | 
					
						
						|  | img = img * (1 - mask) + dilate_img * mask | 
					
						
						|  | img = img.clip(0, 255).astype(np.uint8) | 
					
						
						|  | Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def loadobj(meshfile): | 
					
						
						|  | v = [] | 
					
						
						|  | f = [] | 
					
						
						|  | meshfp = open(meshfile, 'r') | 
					
						
						|  | for line in meshfp.readlines(): | 
					
						
						|  | data = line.strip().split(' ') | 
					
						
						|  | data = [da for da in data if len(da) > 0] | 
					
						
						|  | if len(data) != 4: | 
					
						
						|  | continue | 
					
						
						|  | if data[0] == 'v': | 
					
						
						|  | v.append([float(d) for d in data[1:]]) | 
					
						
						|  | if data[0] == 'f': | 
					
						
						|  | data = [da.split('/')[0] for da in data] | 
					
						
						|  | f.append([int(d) for d in data[1:]]) | 
					
						
						|  | meshfp.close() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | facenp_fx3 = np.array(f, dtype=np.int64) - 1 | 
					
						
						|  | pointnp_px3 = np.array(v, dtype=np.float32) | 
					
						
						|  | return pointnp_px3, facenp_fx3 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def loadobjtex(meshfile): | 
					
						
						|  | v = [] | 
					
						
						|  | vt = [] | 
					
						
						|  | f = [] | 
					
						
						|  | ft = [] | 
					
						
						|  | meshfp = open(meshfile, 'r') | 
					
						
						|  | for line in meshfp.readlines(): | 
					
						
						|  | data = line.strip().split(' ') | 
					
						
						|  | data = [da for da in data if len(da) > 0] | 
					
						
						|  | if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)): | 
					
						
						|  | continue | 
					
						
						|  | if data[0] == 'v': | 
					
						
						|  | assert len(data) == 4 | 
					
						
						|  |  | 
					
						
						|  | v.append([float(d) for d in data[1:]]) | 
					
						
						|  | if data[0] == 'vt': | 
					
						
						|  | if len(data) == 3 or len(data) == 4: | 
					
						
						|  | vt.append([float(d) for d in data[1:3]]) | 
					
						
						|  | if data[0] == 'f': | 
					
						
						|  | data = [da.split('/') for da in data] | 
					
						
						|  | if len(data) == 4: | 
					
						
						|  | f.append([int(d[0]) for d in data[1:]]) | 
					
						
						|  | ft.append([int(d[1]) for d in data[1:]]) | 
					
						
						|  | elif len(data) == 5: | 
					
						
						|  | idx1 = [1, 2, 3] | 
					
						
						|  | data1 = [data[i] for i in idx1] | 
					
						
						|  | f.append([int(d[0]) for d in data1]) | 
					
						
						|  | ft.append([int(d[1]) for d in data1]) | 
					
						
						|  | idx2 = [1, 3, 4] | 
					
						
						|  | data2 = [data[i] for i in idx2] | 
					
						
						|  | f.append([int(d[0]) for d in data2]) | 
					
						
						|  | ft.append([int(d[1]) for d in data2]) | 
					
						
						|  | meshfp.close() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | facenp_fx3 = np.array(f, dtype=np.int64) - 1 | 
					
						
						|  | ftnp_fx3 = np.array(ft, dtype=np.int64) - 1 | 
					
						
						|  | pointnp_px3 = np.array(v, dtype=np.float32) | 
					
						
						|  | uvs = np.array(vt, dtype=np.float32) | 
					
						
						|  | return pointnp_px3, facenp_fx3, uvs, ftnp_fx3 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def interpolate(attr, rast, attr_idx, rast_db=None): | 
					
						
						|  | return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): | 
					
						
						|  | vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) | 
					
						
						|  |  | 
					
						
						|  | uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) | 
					
						
						|  | mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) | 
					
						
						|  |  | 
					
						
						|  | uv_clip = uvs[None, ...] * 2.0 - 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) | 
					
						
						|  | mask = rast[..., 3:4] > 0 | 
					
						
						|  | return uvs, mesh_tex_idx, gb_pos, mask | 
					
						
						|  |  |