|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from scipy import integrate |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
|
|
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by |
|
Katherine Crowson: |
|
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and |
|
[`~ConfigMixin.from_config`] functios. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, optional): TODO |
|
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, |
|
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. |
|
timestep_values (`np.ndarry`, optional): TODO |
|
tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. |
|
|
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[np.ndarray] = None, |
|
timestep_values: Optional[np.ndarray] = None, |
|
tensor_format: str = "pt", |
|
): |
|
if trained_betas is not None: |
|
self.betas = np.asarray(trained_betas) |
|
if beta_schedule == "linear": |
|
self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2 |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = np.cumprod(self.alphas, axis=0) |
|
|
|
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() |
|
self.derivatives = [] |
|
|
|
self.tensor_format = tensor_format |
|
self.set_format(tensor_format=tensor_format) |
|
|
|
def get_lms_coefficient(self, order, t, current_order): |
|
""" |
|
Compute a linear multistep coefficient. |
|
|
|
Args: |
|
order (TODO): |
|
t (TODO): |
|
current_order (TODO): |
|
""" |
|
|
|
def lms_derivative(tau): |
|
prod = 1.0 |
|
for k in range(order): |
|
if current_order == k: |
|
continue |
|
prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k]) |
|
return prod |
|
|
|
integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0] |
|
|
|
return integrated_coeff |
|
|
|
def set_timesteps(self, num_inference_steps: int): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float) |
|
|
|
low_idx = np.floor(self.timesteps).astype(int) |
|
high_idx = np.ceil(self.timesteps).astype(int) |
|
frac = np.mod(self.timesteps, 1.0) |
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] |
|
self.sigmas = np.concatenate([sigmas, [0.0]]) |
|
|
|
self.derivatives = [] |
|
|
|
self.set_format(tensor_format=self.tensor_format) |
|
|
|
def step( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
timestep: int, |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
order: int = 4, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor` or `np.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
order: coefficient for multi-step inference. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
sigma = self.sigmas[timestep] |
|
|
|
|
|
pred_original_sample = sample - sigma * model_output |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma |
|
self.derivatives.append(derivative) |
|
if len(self.derivatives) > order: |
|
self.derivatives.pop(0) |
|
|
|
|
|
order = min(timestep + 1, order) |
|
lms_coeffs = [self.get_lms_coefficient(order, timestep, curr_order) for curr_order in range(order)] |
|
|
|
|
|
prev_sample = sample + sum( |
|
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives)) |
|
) |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: Union[torch.FloatTensor, np.ndarray], |
|
noise: Union[torch.FloatTensor, np.ndarray], |
|
timesteps: Union[torch.IntTensor, np.ndarray], |
|
) -> Union[torch.FloatTensor, np.ndarray]: |
|
sigmas = self.match_shape(self.sigmas[timesteps], noise) |
|
noisy_samples = original_samples + noise * sigmas |
|
|
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|