|
from dataclasses import dataclass |
|
from typing import List, Union |
|
|
|
import numpy as np |
|
|
|
import PIL |
|
from PIL import Image |
|
|
|
from ...utils import BaseOutput, is_onnx_available, is_transformers_available |
|
|
|
|
|
@dataclass |
|
class StableDiffusionPipelineOutput(BaseOutput): |
|
""" |
|
Output class for Stable Diffusion pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, |
|
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. |
|
nsfw_content_detected (`List[bool]`) |
|
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
nsfw_content_detected: List[bool] |
|
|
|
|
|
if is_transformers_available(): |
|
from .pipeline_stable_diffusion import StableDiffusionPipeline |
|
from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline |
|
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline |
|
from .safety_checker import StableDiffusionSafetyChecker |
|
|
|
if is_transformers_available() and is_onnx_available(): |
|
from .pipeline_stable_diffusion_onnx import StableDiffusionOnnxPipeline |
|
|