|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
flip_sin_to_cos: bool = False, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
): |
|
|
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the |
|
embeddings. :return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent).to(device=timesteps.device) |
|
emb = timesteps[:, None] * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) |
|
|
|
|
|
if flip_sin_to_cos: |
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb.to(torch.float16) |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(channel, time_embed_dim) |
|
self.act = None |
|
if act_fn == "silu": |
|
self.act = nn.SiLU() |
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim) |
|
|
|
def forward(self, sample): |
|
sample = self.linear_1(sample) |
|
|
|
if self.act is not None: |
|
sample = self.act(sample) |
|
|
|
sample = self.linear_2(sample) |
|
return sample |
|
|
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
self.downscale_freq_shift = downscale_freq_shift |
|
|
|
def forward(self, timesteps): |
|
t_emb = get_timestep_embedding( |
|
timesteps, |
|
self.num_channels, |
|
flip_sin_to_cos=self.flip_sin_to_cos, |
|
downscale_freq_shift=self.downscale_freq_shift, |
|
) |
|
return t_emb |
|
|
|
|
|
class GaussianFourierProjection(nn.Module): |
|
"""Gaussian Fourier embeddings for noise levels.""" |
|
|
|
def __init__(self, embedding_size: int = 256, scale: float = 1.0): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) |
|
|
|
|
|
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) |
|
|
|
self.weight = self.W |
|
|
|
def forward(self, x): |
|
x = torch.log(x) |
|
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi |
|
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) |
|
return out |
|
|