Spaces:
wssb
/
Runtime error

EDICT / my_diffusers /schedulers /scheduling_lms_discrete.py
wssb's picture
Duplicate from Salesforce/EDICT
d2a06b2
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import numpy as np
import torch
from scipy import integrate
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
[`~ConfigMixin.from_config`] functios.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional): TODO
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
timestep_values (`np.ndarry`, optional): TODO
tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays.
"""
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
timestep_values: Optional[np.ndarray] = None,
tensor_format: str = "pt",
):
if trained_betas is not None:
self.betas = np.asarray(trained_betas)
if beta_schedule == "linear":
self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
# setable values
self.num_inference_steps = None
self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
self.derivatives = []
self.tensor_format = tensor_format
self.set_format(tensor_format=tensor_format)
def get_lms_coefficient(self, order, t, current_order):
"""
Compute a linear multistep coefficient.
Args:
order (TODO):
t (TODO):
current_order (TODO):
"""
def lms_derivative(tau):
prod = 1.0
for k in range(order):
if current_order == k:
continue
prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
return prod
integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
return integrated_coeff
def set_timesteps(self, num_inference_steps: int):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float)
low_idx = np.floor(self.timesteps).astype(int)
high_idx = np.ceil(self.timesteps).astype(int)
frac = np.mod(self.timesteps, 1.0)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx]
self.sigmas = np.concatenate([sigmas, [0.0]])
self.derivatives = []
self.set_format(tensor_format=self.tensor_format)
def step(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: int,
sample: Union[torch.FloatTensor, np.ndarray],
order: int = 4,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
order: coefficient for multi-step inference.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
sigma = self.sigmas[timestep]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
pred_original_sample = sample - sigma * model_output
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
self.derivatives.append(derivative)
if len(self.derivatives) > order:
self.derivatives.pop(0)
# 3. Compute linear multistep coefficients
order = min(timestep + 1, order)
lms_coeffs = [self.get_lms_coefficient(order, timestep, curr_order) for curr_order in range(order)]
# 4. Compute previous sample based on the derivatives path
prev_sample = sample + sum(
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
)
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: Union[torch.FloatTensor, np.ndarray],
noise: Union[torch.FloatTensor, np.ndarray],
timesteps: Union[torch.IntTensor, np.ndarray],
) -> Union[torch.FloatTensor, np.ndarray]:
sigmas = self.match_shape(self.sigmas[timesteps], noise)
noisy_samples = original_samples + noise * sigmas
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps