|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from ...models import UNet2DModel |
|
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from ...schedulers import PNDMScheduler |
|
|
|
|
|
class PNDMPipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
unet (`UNet2DModel`): U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
The `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image. |
|
""" |
|
|
|
unet: UNet2DModel |
|
scheduler: PNDMScheduler |
|
|
|
def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler): |
|
super().__init__() |
|
scheduler = scheduler.set_format("pt") |
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
batch_size: int = 1, |
|
num_inference_steps: int = 50, |
|
generator: Optional[torch.Generator] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
r""" |
|
Args: |
|
batch_size (`int`, `optional`, defaults to 1): The number of images to generate. |
|
num_inference_steps (`int`, `optional`, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
generator (`torch.Generator`, `optional`): A [torch |
|
generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generate image. Choose |
|
between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. |
|
return_dict (`bool`, `optional`, defaults to `True`): Whether or not to return a |
|
[`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if |
|
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the |
|
generated images. |
|
""" |
|
|
|
|
|
|
|
if "torch_device" in kwargs: |
|
device = kwargs.pop("torch_device") |
|
warnings.warn( |
|
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." |
|
" Consider using `pipe.to(torch_device)` instead." |
|
) |
|
|
|
|
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.to(device) |
|
|
|
|
|
image = torch.randn( |
|
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), |
|
generator=generator, |
|
) |
|
image = image.to(self.device) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
model_output = self.unet(image, t).sample |
|
|
|
image = self.scheduler.step(model_output, t, image).prev_sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|