Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.optim | |
| from . import LegacyFairseqOptimizer, register_optimizer | |
| class FairseqAdamax(LegacyFairseqOptimizer): | |
| def __init__(self, args, params): | |
| super().__init__(args) | |
| self._optimizer = Adamax(params, **self.optimizer_config) | |
| def add_args(parser): | |
| """Add optimizer-specific arguments to the parser.""" | |
| # fmt: off | |
| parser.add_argument('--adamax-betas', default='(0.9, 0.999)', metavar='B', | |
| help='betas for Adam optimizer') | |
| parser.add_argument('--adamax-eps', type=float, default=1e-8, metavar='D', | |
| help='epsilon for Adam optimizer') | |
| parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', | |
| help='weight decay') | |
| parser.add_argument('--no-bias-correction', default=False, action='store_true', | |
| help='disable bias correction') | |
| # fmt: on | |
| def optimizer_config(self): | |
| """ | |
| Return a kwarg dictionary that will be used to override optimizer | |
| args stored in checkpoints. This allows us to load a checkpoint and | |
| resume training using a different set of optimizer args, e.g., with a | |
| different learning rate. | |
| """ | |
| return { | |
| "lr": self.args.lr[0], | |
| "betas": eval(self.args.adamax_betas), | |
| "eps": self.args.adamax_eps, | |
| "weight_decay": self.args.weight_decay, | |
| "bias_correction": not self.args.no_bias_correction, | |
| } | |
| class Adamax(torch.optim.Optimizer): | |
| """Implements Adamax algorithm (a variant of Adam based on infinity norm). | |
| It has been proposed in `Adam: A Method for Stochastic Optimization`__. | |
| Compared to the version in PyTorch, this version implements a fix for weight decay. | |
| Args: | |
| params (iterable): iterable of parameters to optimize or dicts defining | |
| parameter groups | |
| lr (float, optional): learning rate (default: 2e-3) | |
| betas (Tuple[float, float], optional): coefficients used for computing | |
| running averages of gradient and its square | |
| eps (float, optional): term added to the denominator to improve | |
| numerical stability (default: 1e-8) | |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
| bias_correction (bool, optional): enable bias correction (default: True) | |
| __ https://arxiv.org/abs/1412.6980 | |
| """ | |
| def __init__( | |
| self, | |
| params, | |
| lr=2e-3, | |
| betas=(0.9, 0.999), | |
| eps=1e-8, | |
| weight_decay=0, | |
| bias_correction=True, | |
| ): | |
| if not 0.0 <= lr: | |
| raise ValueError("Invalid learning rate: {}".format(lr)) | |
| if not 0.0 <= eps: | |
| raise ValueError("Invalid epsilon value: {}".format(eps)) | |
| if not 0.0 <= betas[0] < 1.0: | |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
| if not 0.0 <= betas[1] < 1.0: | |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
| if not 0.0 <= weight_decay: | |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | |
| defaults = dict( | |
| lr=lr, | |
| betas=betas, | |
| eps=eps, | |
| weight_decay=weight_decay, | |
| bias_correction=bias_correction, | |
| ) | |
| super(Adamax, self).__init__(params, defaults) | |
| def supports_memory_efficient_fp16(self): | |
| return True | |
| def supports_flat_params(self): | |
| return True | |
| def step(self, closure=None): | |
| """Performs a single optimization step. | |
| Args: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| """ | |
| loss = None | |
| if closure is not None: | |
| loss = closure() | |
| for group in self.param_groups: | |
| for p in group["params"]: | |
| if p.grad is None: | |
| continue | |
| grad = p.grad.data.float() | |
| if grad.is_sparse: | |
| raise RuntimeError("Adamax does not support sparse gradients") | |
| p_data_fp32 = p.data | |
| if p.data.dtype in {torch.float16, torch.bfloat16}: | |
| p_data_fp32 = p_data_fp32.float() | |
| state = self.state[p] | |
| # State initialization | |
| if len(state) == 0: | |
| state["step"] = 0 | |
| state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
| state["exp_inf"] = torch.zeros_like(p_data_fp32) | |
| else: | |
| state["exp_avg"] = state["exp_avg"].to(p_data_fp32) | |
| state["exp_inf"] = state["exp_inf"].to(p_data_fp32) | |
| exp_avg, exp_inf = state["exp_avg"], state["exp_inf"] | |
| beta1, beta2 = group["betas"] | |
| eps = group["eps"] | |
| state["step"] += 1 | |
| # Update biased first moment estimate. | |
| exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
| # Update the exponentially weighted infinity norm. | |
| torch.max( | |
| exp_inf.mul_(beta2), | |
| grad.abs_(), | |
| out=exp_inf, | |
| ) | |
| step_size = group["lr"] | |
| if group["bias_correction"]: | |
| bias_correction = 1 - beta1 ** state["step"] | |
| step_size /= bias_correction | |
| if group["weight_decay"] != 0: | |
| p_data_fp32.add_( | |
| p_data_fp32, alpha=-group["weight_decay"] * group["lr"] | |
| ) | |
| p_data_fp32.addcdiv_(exp_avg, exp_inf.add(eps), value=-step_size) | |
| if p.data.dtype in {torch.float16, torch.bfloat16}: | |
| p.data.copy_(p_data_fp32) | |
| return loss | |