Spaces:
Runtime error
Runtime error
from __future__ import absolute_import, division, print_function, unicode_literals | |
import sys | |
import os | |
AP_BWE_main_dir_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "AP_BWE_main") | |
sys.path.append(AP_BWE_main_dir_path) | |
import json | |
import torch | |
import torchaudio.functional as aF | |
# from attrdict import AttrDict####will be bug in py3.10 | |
from datasets1.dataset import amp_pha_stft, amp_pha_istft | |
from models.model import APNet_BWE_Model | |
class AP_BWE: | |
def __init__(self, device, DictToAttrRecursive, checkpoint_file=None): | |
if checkpoint_file == None: | |
checkpoint_file = "%s/24kto48k/g_24kto48k.zip" % (AP_BWE_main_dir_path) | |
if os.path.exists(checkpoint_file) == False: | |
raise FileNotFoundError | |
config_file = os.path.join(os.path.split(checkpoint_file)[0], "config.json") | |
with open(config_file) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
# h = AttrDict(json_config) | |
h = DictToAttrRecursive(json_config) | |
model = APNet_BWE_Model(h).to(device) | |
state_dict = torch.load(checkpoint_file, map_location="cpu", weights_only=False) | |
model.load_state_dict(state_dict["generator"]) | |
model.eval() | |
self.device = device | |
self.model = model | |
self.h = h | |
def to(self, *arg, **kwargs): | |
self.model.to(*arg, **kwargs) | |
self.device = self.model.conv_pre_mag.weight.device | |
return self | |
def __call__(self, audio, orig_sampling_rate): | |
with torch.no_grad(): | |
# audio, orig_sampling_rate = torchaudio.load(inp_path) | |
# audio = audio.to(self.device) | |
audio = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.h.hr_sampling_rate) | |
amp_nb, pha_nb, com_nb = amp_pha_stft(audio, self.h.n_fft, self.h.hop_size, self.h.win_size) | |
amp_wb_g, pha_wb_g, com_wb_g = self.model(amp_nb, pha_nb) | |
audio_hr_g = amp_pha_istft(amp_wb_g, pha_wb_g, self.h.n_fft, self.h.hop_size, self.h.win_size) | |
# sf.write(opt_path, audio_hr_g.squeeze().cpu().numpy(), self.h.hr_sampling_rate, 'PCM_16') | |
return audio_hr_g.squeeze().cpu().numpy(), self.h.hr_sampling_rate | |