Spaces:
Runtime error
Runtime error
import os | |
import re | |
import sys | |
import torch | |
from tools.i18n.i18n import I18nAuto | |
i18n = I18nAuto(language=os.environ.get("language", "Auto")) | |
pretrained_sovits_name = { | |
"v1": "GPT_SoVITS/pretrained_models/s2G488k.pth", | |
"v2": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", | |
"v3": "GPT_SoVITS/pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder,算了。。。 | |
"v4": "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth", | |
"v2Pro": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth", | |
"v2ProPlus": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth", | |
} | |
pretrained_gpt_name = { | |
"v1": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", | |
"v2": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", | |
"v3": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
"v4": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
"v2Pro": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
"v2ProPlus": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
} | |
name2sovits_path = { | |
# i18n("不训练直接推v1底模!"): "GPT_SoVITS/pretrained_models/s2G488k.pth", | |
i18n("不训练直接推v2底模!"): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", | |
# i18n("不训练直接推v3底模!"): "GPT_SoVITS/pretrained_models/s2Gv3.pth", | |
# i18n("不训练直接推v4底模!"): "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth", | |
i18n("不训练直接推v2Pro底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth", | |
i18n("不训练直接推v2ProPlus底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth", | |
} | |
name2gpt_path = { | |
# i18n("不训练直接推v1底模!"):"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", | |
i18n( | |
"不训练直接推v2底模!" | |
): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", | |
i18n("不训练直接推v3底模!"): "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
} | |
SoVITS_weight_root = [ | |
"SoVITS_weights", | |
"SoVITS_weights_v2", | |
"SoVITS_weights_v3", | |
"SoVITS_weights_v4", | |
"SoVITS_weights_v2Pro", | |
"SoVITS_weights_v2ProPlus", | |
] | |
GPT_weight_root = [ | |
"GPT_weights", | |
"GPT_weights_v2", | |
"GPT_weights_v3", | |
"GPT_weights_v4", | |
"GPT_weights_v2Pro", | |
"GPT_weights_v2ProPlus", | |
] | |
SoVITS_weight_version2root = { | |
"v1": "SoVITS_weights", | |
"v2": "SoVITS_weights_v2", | |
"v3": "SoVITS_weights_v3", | |
"v4": "SoVITS_weights_v4", | |
"v2Pro": "SoVITS_weights_v2Pro", | |
"v2ProPlus": "SoVITS_weights_v2ProPlus", | |
} | |
GPT_weight_version2root = { | |
"v1": "GPT_weights", | |
"v2": "GPT_weights_v2", | |
"v3": "GPT_weights_v3", | |
"v4": "GPT_weights_v4", | |
"v2Pro": "GPT_weights_v2Pro", | |
"v2ProPlus": "GPT_weights_v2ProPlus", | |
} | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split("(\d+)", s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
def get_weights_names(): | |
SoVITS_names = [] | |
for key in name2sovits_path: | |
if os.path.exists(name2sovits_path[key]): | |
SoVITS_names.append(key) | |
for path in SoVITS_weight_root: | |
if not os.path.exists(path): | |
continue | |
for name in os.listdir(path): | |
if name.endswith(".pth"): | |
SoVITS_names.append("%s/%s" % (path, name)) | |
if not SoVITS_names: | |
SoVITS_names = [""] | |
GPT_names = [] | |
for key in name2gpt_path: | |
if os.path.exists(name2gpt_path[key]): | |
GPT_names.append(key) | |
for path in GPT_weight_root: | |
if not os.path.exists(path): | |
continue | |
for name in os.listdir(path): | |
if name.endswith(".ckpt"): | |
GPT_names.append("%s/%s" % (path, name)) | |
SoVITS_names = sorted(SoVITS_names, key=custom_sort_key) | |
GPT_names = sorted(GPT_names, key=custom_sort_key) | |
if not GPT_names: | |
GPT_names = [""] | |
return SoVITS_names, GPT_names | |
def change_choices(): | |
SoVITS_names, GPT_names = get_weights_names() | |
return {"choices": SoVITS_names, "__type__": "update"}, { | |
"choices": GPT_names, | |
"__type__": "update", | |
} | |
# 推理用的指定模型 | |
sovits_path = "" | |
gpt_path = "" | |
is_half_str = os.environ.get("is_half", "True") | |
is_half = True if is_half_str.lower() == "true" else False | |
is_share_str = os.environ.get("is_share", "False") | |
is_share = True if is_share_str.lower() == "true" else False | |
cnhubert_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" | |
bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" | |
pretrained_sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" | |
pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
exp_root = "logs" | |
python_exec = sys.executable or "python" | |
webui_port_main = 9874 | |
webui_port_uvr5 = 9873 | |
webui_port_infer_tts = 9872 | |
webui_port_subfix = 9871 | |
api_port = 9880 | |
#Thanks to the contribution of @Karasukaigan and @XXXXRT666 | |
def get_device_dtype_sm(idx: int) -> tuple[torch.device, torch.dtype, float, float]: | |
cpu = torch.device("cpu") | |
cuda = torch.device(f"cuda:{idx}") | |
if not torch.cuda.is_available(): | |
return cpu, torch.float32, 0.0, 0.0 | |
device_idx = idx | |
capability = torch.cuda.get_device_capability(device_idx) | |
name = torch.cuda.get_device_name(device_idx) | |
mem_bytes = torch.cuda.get_device_properties(device_idx).total_memory | |
mem_gb = mem_bytes / (1024**3) + 0.4 | |
major, minor = capability | |
sm_version = major + minor / 10.0 | |
is_16_series = bool(re.search(r"16\d{2}", name))and sm_version == 7.5 | |
if mem_gb < 4 or sm_version < 5.3:return cpu, torch.float32, 0.0, 0.0 | |
if sm_version == 6.1 or is_16_series==True:return cuda, torch.float32, sm_version, mem_gb | |
if sm_version > 6.1:return cuda, torch.float16, sm_version, mem_gb | |
return cpu, torch.float32, 0.0, 0.0 | |
IS_GPU = True | |
GPU_INFOS: list[str] = [] | |
GPU_INDEX: set[int] = set() | |
GPU_COUNT = torch.cuda.device_count() | |
CPU_INFO: str = "0\tCPU " + i18n("CPU训练,较慢") | |
tmp: list[tuple[torch.device, torch.dtype, float, float]] = [] | |
memset: set[float] = set() | |
for i in range(max(GPU_COUNT, 1)): | |
tmp.append(get_device_dtype_sm(i)) | |
for j in tmp: | |
device = j[0] | |
memset.add(j[3]) | |
if device.type != "cpu": | |
GPU_INFOS.append(f"{device.index}\t{torch.cuda.get_device_name(device.index)}") | |
GPU_INDEX.add(device.index) | |
if not GPU_INFOS: | |
IS_GPU = False | |
GPU_INFOS.append(CPU_INFO) | |
GPU_INDEX.add(0) | |
infer_device = max(tmp, key=lambda x: (x[2], x[3]))[0] | |
is_half = any(dtype == torch.float16 for _, dtype, _, _ in tmp) | |
class Config: | |
def __init__(self): | |
self.sovits_path = sovits_path | |
self.gpt_path = gpt_path | |
self.is_half = is_half | |
self.cnhubert_path = cnhubert_path | |
self.bert_path = bert_path | |
self.pretrained_sovits_path = pretrained_sovits_path | |
self.pretrained_gpt_path = pretrained_gpt_path | |
self.exp_root = exp_root | |
self.python_exec = python_exec | |
self.infer_device = infer_device | |
self.webui_port_main = webui_port_main | |
self.webui_port_uvr5 = webui_port_uvr5 | |
self.webui_port_infer_tts = webui_port_infer_tts | |
self.webui_port_subfix = webui_port_subfix | |
self.api_port = api_port | |