Spaces:
Runtime error
Runtime error
""" | |
# api.py usage | |
` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" ` | |
## 执行参数: | |
`-s` - `SoVITS模型路径, 可在 config.py 中指定` | |
`-g` - `GPT模型路径, 可在 config.py 中指定` | |
调用请求缺少参考音频时使用 | |
`-dr` - `默认参考音频路径` | |
`-dt` - `默认参考音频文本` | |
`-dl` - `默认参考音频语种, "中文","英文","日文","韩文","粤语,"zh","en","ja","ko","yue"` | |
`-d` - `推理设备, "cuda","cpu"` | |
`-a` - `绑定地址, 默认"127.0.0.1"` | |
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定` | |
`-fp` - `覆盖 config.py 使用全精度` | |
`-hp` - `覆盖 config.py 使用半精度` | |
`-sm` - `流式返回模式, 默认不启用, "close","c", "normal","n", "keepalive","k"` | |
·-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"` | |
·-st` - `返回的音频数据类型, 默认int16, "int16", "int32"` | |
·-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入` | |
`-hb` - `cnhubert路径` | |
`-b` - `bert路径` | |
## 调用: | |
### 推理 | |
endpoint: `/` | |
使用执行参数指定的参考音频: | |
GET: | |
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` | |
POST: | |
```json | |
{ | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh" | |
} | |
``` | |
使用执行参数指定的参考音频并设定分割符号: | |
GET: | |
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&cut_punc=,。` | |
POST: | |
```json | |
{ | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh", | |
"cut_punc": ",。", | |
} | |
``` | |
手动指定当次推理所使用的参考音频: | |
GET: | |
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` | |
POST: | |
```json | |
{ | |
"refer_wav_path": "123.wav", | |
"prompt_text": "一二三。", | |
"prompt_language": "zh", | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh" | |
} | |
``` | |
RESP: | |
成功: 直接返回 wav 音频流, http code 200 | |
失败: 返回包含错误信息的 json, http code 400 | |
手动指定当次推理所使用的参考音频,并提供参数: | |
GET: | |
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&top_k=20&top_p=0.6&temperature=0.6&speed=1&inp_refs="456.wav"&inp_refs="789.wav"` | |
POST: | |
```json | |
{ | |
"refer_wav_path": "123.wav", | |
"prompt_text": "一二三。", | |
"prompt_language": "zh", | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh", | |
"top_k": 20, | |
"top_p": 0.6, | |
"temperature": 0.6, | |
"speed": 1, | |
"inp_refs": ["456.wav","789.wav"] | |
} | |
``` | |
RESP: | |
成功: 直接返回 wav 音频流, http code 200 | |
失败: 返回包含错误信息的 json, http code 400 | |
### 更换默认参考音频 | |
endpoint: `/change_refer` | |
key与推理端一样 | |
GET: | |
`http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh` | |
POST: | |
```json | |
{ | |
"refer_wav_path": "123.wav", | |
"prompt_text": "一二三。", | |
"prompt_language": "zh" | |
} | |
``` | |
RESP: | |
成功: json, http code 200 | |
失败: json, 400 | |
### 命令控制 | |
endpoint: `/control` | |
command: | |
"restart": 重新运行 | |
"exit": 结束运行 | |
GET: | |
`http://127.0.0.1:9880/control?command=restart` | |
POST: | |
```json | |
{ | |
"command": "restart" | |
} | |
``` | |
RESP: 无 | |
""" | |
import argparse | |
import os | |
import re | |
import sys | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
sys.path.append("%s/GPT_SoVITS" % (now_dir)) | |
import signal | |
from text.LangSegmenter import LangSegmenter | |
from time import time as ttime | |
import torch | |
import torchaudio | |
import librosa | |
import soundfile as sf | |
from fastapi import FastAPI, Request, Query | |
from fastapi.responses import StreamingResponse, JSONResponse | |
import uvicorn | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
from feature_extractor import cnhubert | |
from io import BytesIO | |
from module.models import SynthesizerTrn, SynthesizerTrnV3 | |
from peft import LoraConfig, get_peft_model | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from module.mel_processing import spectrogram_torch | |
import config as global_config | |
import logging | |
import subprocess | |
class DefaultRefer: | |
def __init__(self, path, text, language): | |
self.path = args.default_refer_path | |
self.text = args.default_refer_text | |
self.language = args.default_refer_language | |
def is_ready(self) -> bool: | |
return is_full(self.path, self.text, self.language) | |
def is_empty(*items): # 任意一项不为空返回False | |
for item in items: | |
if item is not None and item != "": | |
return False | |
return True | |
def is_full(*items): # 任意一项为空返回False | |
for item in items: | |
if item is None or item == "": | |
return False | |
return True | |
def init_bigvgan(): | |
global bigvgan_model | |
from BigVGAN import bigvgan | |
bigvgan_model = bigvgan.BigVGAN.from_pretrained( | |
"%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), | |
use_cuda_kernel=False, | |
) # if True, RuntimeError: Ninja is required to load C++ extensions | |
# remove weight norm in the model and set to eval mode | |
bigvgan_model.remove_weight_norm() | |
bigvgan_model = bigvgan_model.eval() | |
if is_half == True: | |
bigvgan_model = bigvgan_model.half().to(device) | |
else: | |
bigvgan_model = bigvgan_model.to(device) | |
resample_transform_dict = {} | |
def resample(audio_tensor, sr0): | |
global resample_transform_dict | |
if sr0 not in resample_transform_dict: | |
resample_transform_dict[sr0] = torchaudio.transforms.Resample(sr0, 24000).to(device) | |
return resample_transform_dict[sr0](audio_tensor) | |
from module.mel_processing import mel_spectrogram_torch | |
spec_min = -12 | |
spec_max = 2 | |
def norm_spec(x): | |
return (x - spec_min) / (spec_max - spec_min) * 2 - 1 | |
def denorm_spec(x): | |
return (x + 1) / 2 * (spec_max - spec_min) + spec_min | |
mel_fn = lambda x: mel_spectrogram_torch( | |
x, | |
**{ | |
"n_fft": 1024, | |
"win_size": 1024, | |
"hop_size": 256, | |
"num_mels": 100, | |
"sampling_rate": 24000, | |
"fmin": 0, | |
"fmax": None, | |
"center": False, | |
}, | |
) | |
sr_model = None | |
def audio_sr(audio, sr): | |
global sr_model | |
if sr_model == None: | |
from tools.audio_sr import AP_BWE | |
try: | |
sr_model = AP_BWE(device, DictToAttrRecursive) | |
except FileNotFoundError: | |
logger.info("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载") | |
return audio.cpu().detach().numpy(), sr | |
return sr_model(audio, sr) | |
class Speaker: | |
def __init__(self, name, gpt, sovits, phones=None, bert=None, prompt=None): | |
self.name = name | |
self.sovits = sovits | |
self.gpt = gpt | |
self.phones = phones | |
self.bert = bert | |
self.prompt = prompt | |
speaker_list = {} | |
class Sovits: | |
def __init__(self, vq_model, hps): | |
self.vq_model = vq_model | |
self.hps = hps | |
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new | |
def get_sovits_weights(sovits_path): | |
path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth" | |
is_exist_s2gv3 = os.path.exists(path_sovits_v3) | |
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path) | |
if if_lora_v3 == True and is_exist_s2gv3 == False: | |
logger.info("SoVITS V3 底模缺失,无法加载相应 LoRA 权重") | |
dict_s2 = load_sovits_new(sovits_path) | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
if "enc_p.text_embedding.weight" not in dict_s2["weight"]: | |
hps.model.version = "v2" # v3model,v2sybomls | |
elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322: | |
hps.model.version = "v1" | |
else: | |
hps.model.version = "v2" | |
if model_version == "v3": | |
hps.model.version = "v3" | |
model_params_dict = vars(hps.model) | |
if model_version != "v3": | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**model_params_dict, | |
) | |
else: | |
vq_model = SynthesizerTrnV3( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**model_params_dict, | |
) | |
init_bigvgan() | |
model_version = hps.model.version | |
logger.info(f"模型版本: {model_version}") | |
if "pretrained" not in sovits_path: | |
try: | |
del vq_model.enc_q | |
except: | |
pass | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
if if_lora_v3 == False: | |
vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
else: | |
vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False) | |
lora_rank = dict_s2["lora_rank"] | |
lora_config = LoraConfig( | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
r=lora_rank, | |
lora_alpha=lora_rank, | |
init_lora_weights=True, | |
) | |
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config) | |
vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
vq_model.cfm = vq_model.cfm.merge_and_unload() | |
# torch.save(vq_model.state_dict(),"merge_win.pth") | |
vq_model.eval() | |
sovits = Sovits(vq_model, hps) | |
return sovits | |
class Gpt: | |
def __init__(self, max_sec, t2s_model): | |
self.max_sec = max_sec | |
self.t2s_model = t2s_model | |
global hz | |
hz = 50 | |
def get_gpt_weights(gpt_path): | |
dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False) | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
# total = sum([param.nelement() for param in t2s_model.parameters()]) | |
# logger.info("Number of parameter: %.2fM" % (total / 1e6)) | |
gpt = Gpt(max_sec, t2s_model) | |
return gpt | |
def change_gpt_sovits_weights(gpt_path, sovits_path): | |
try: | |
gpt = get_gpt_weights(gpt_path) | |
sovits = get_sovits_weights(sovits_path) | |
except Exception as e: | |
return JSONResponse({"code": 400, "message": str(e)}, status_code=400) | |
speaker_list["default"] = Speaker(name="default", gpt=gpt, sovits=sovits) | |
return JSONResponse({"code": 0, "message": "Success"}, status_code=200) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# if(is_half==True):phone_level_feature=phone_level_feature.half() | |
return phone_level_feature.T | |
def clean_text_inf(text, language, version): | |
language = language.replace("all_", "") | |
phones, word2ph, norm_text = clean_text(text, language, version) | |
phones = cleaned_text_to_sequence(phones, version) | |
return phones, word2ph, norm_text | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language = language.replace("all_", "") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
from text import chinese | |
def get_phones_and_bert(text, language, version, final=False): | |
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: | |
formattext = text | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
if language == "all_zh": | |
if re.search(r"[A-Za-z]", formattext): | |
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext) | |
formattext = chinese.mix_text_normalize(formattext) | |
return get_phones_and_bert(formattext, "zh", version) | |
else: | |
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
elif language == "all_yue" and re.search(r"[A-Za-z]", formattext): | |
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext) | |
formattext = chinese.mix_text_normalize(formattext) | |
return get_phones_and_bert(formattext, "yue", version) | |
else: | |
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: | |
textlist = [] | |
langlist = [] | |
if language == "auto": | |
for tmp in LangSegmenter.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
elif language == "auto_yue": | |
for tmp in LangSegmenter.getTexts(text): | |
if tmp["lang"] == "zh": | |
tmp["lang"] = "yue" | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
else: | |
for tmp in LangSegmenter.getTexts(text): | |
if tmp["lang"] == "en": | |
langlist.append(tmp["lang"]) | |
else: | |
# 因无法区别中日韩文汉字,以用户输入为准 | |
langlist.append(language) | |
textlist.append(tmp["text"]) | |
phones_list = [] | |
bert_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
phones_list.append(phones) | |
norm_text_list.append(norm_text) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
phones = sum(phones_list, []) | |
norm_text = "".join(norm_text_list) | |
if not final and len(phones) < 6: | |
return get_phones_and_bert("." + text, language, version, final=True) | |
return phones, bert.to(torch.float16 if is_half == True else torch.float32), norm_text | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def get_spepc(hps, filename): | |
audio, _ = librosa.load(filename, sr=int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
maxx = audio.abs().max() | |
if maxx > 1: | |
audio /= min(2, maxx) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
def pack_audio(audio_bytes, data, rate): | |
if media_type == "ogg": | |
audio_bytes = pack_ogg(audio_bytes, data, rate) | |
elif media_type == "aac": | |
audio_bytes = pack_aac(audio_bytes, data, rate) | |
else: | |
# wav无法流式, 先暂存raw | |
audio_bytes = pack_raw(audio_bytes, data, rate) | |
return audio_bytes | |
def pack_ogg(audio_bytes, data, rate): | |
# Author: AkagawaTsurunaki | |
# Issue: | |
# Stack overflow probabilistically occurs | |
# when the function `sf_writef_short` of `libsndfile_64bit.dll` is called | |
# using the Python library `soundfile` | |
# Note: | |
# This is an issue related to `libsndfile`, not this project itself. | |
# It happens when you generate a large audio tensor (about 499804 frames in my PC) | |
# and try to convert it to an ogg file. | |
# Related: | |
# https://github.com/RVC-Boss/GPT-SoVITS/issues/1199 | |
# https://github.com/libsndfile/libsndfile/issues/1023 | |
# https://github.com/bastibe/python-soundfile/issues/396 | |
# Suggestion: | |
# Or split the whole audio data into smaller audio segment to avoid stack overflow? | |
def handle_pack_ogg(): | |
with sf.SoundFile(audio_bytes, mode="w", samplerate=rate, channels=1, format="ogg") as audio_file: | |
audio_file.write(data) | |
import threading | |
# See: https://docs.python.org/3/library/threading.html | |
# The stack size of this thread is at least 32768 | |
# If stack overflow error still occurs, just modify the `stack_size`. | |
# stack_size = n * 4096, where n should be a positive integer. | |
# Here we chose n = 4096. | |
stack_size = 4096 * 4096 | |
try: | |
threading.stack_size(stack_size) | |
pack_ogg_thread = threading.Thread(target=handle_pack_ogg) | |
pack_ogg_thread.start() | |
pack_ogg_thread.join() | |
except RuntimeError as e: | |
# If changing the thread stack size is unsupported, a RuntimeError is raised. | |
print("RuntimeError: {}".format(e)) | |
print("Changing the thread stack size is unsupported.") | |
except ValueError as e: | |
# If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified. | |
print("ValueError: {}".format(e)) | |
print("The specified stack size is invalid.") | |
return audio_bytes | |
def pack_raw(audio_bytes, data, rate): | |
audio_bytes.write(data.tobytes()) | |
return audio_bytes | |
def pack_wav(audio_bytes, rate): | |
if is_int32: | |
data = np.frombuffer(audio_bytes.getvalue(), dtype=np.int32) | |
wav_bytes = BytesIO() | |
sf.write(wav_bytes, data, rate, format="WAV", subtype="PCM_32") | |
else: | |
data = np.frombuffer(audio_bytes.getvalue(), dtype=np.int16) | |
wav_bytes = BytesIO() | |
sf.write(wav_bytes, data, rate, format="WAV") | |
return wav_bytes | |
def pack_aac(audio_bytes, data, rate): | |
if is_int32: | |
pcm = "s32le" | |
bit_rate = "256k" | |
else: | |
pcm = "s16le" | |
bit_rate = "128k" | |
process = subprocess.Popen( | |
[ | |
"ffmpeg", | |
"-f", | |
pcm, # 输入16位有符号小端整数PCM | |
"-ar", | |
str(rate), # 设置采样率 | |
"-ac", | |
"1", # 单声道 | |
"-i", | |
"pipe:0", # 从管道读取输入 | |
"-c:a", | |
"aac", # 音频编码器为AAC | |
"-b:a", | |
bit_rate, # 比特率 | |
"-vn", # 不包含视频 | |
"-f", | |
"adts", # 输出AAC数据流格式 | |
"pipe:1", # 将输出写入管道 | |
], | |
stdin=subprocess.PIPE, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
) | |
out, _ = process.communicate(input=data.tobytes()) | |
audio_bytes.write(out) | |
return audio_bytes | |
def read_clean_buffer(audio_bytes): | |
audio_chunk = audio_bytes.getvalue() | |
audio_bytes.truncate(0) | |
audio_bytes.seek(0) | |
return audio_bytes, audio_chunk | |
def cut_text(text, punc): | |
punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}] | |
if len(punc_list) > 0: | |
punds = r"[" + "".join(punc_list) + r"]" | |
text = text.strip("\n") | |
items = re.split(f"({punds})", text) | |
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])] | |
# 在句子不存在符号或句尾无符号的时候保证文本完整 | |
if len(items) % 2 == 1: | |
mergeitems.append(items[-1]) | |
text = "\n".join(mergeitems) | |
while "\n\n" in text: | |
text = text.replace("\n\n", "\n") | |
return text | |
def only_punc(text): | |
return not any(t.isalnum() or t.isalpha() for t in text) | |
splits = { | |
",", | |
"。", | |
"?", | |
"!", | |
",", | |
".", | |
"?", | |
"!", | |
"~", | |
":", | |
":", | |
"—", | |
"…", | |
} | |
def get_tts_wav( | |
ref_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
top_k=15, | |
top_p=0.6, | |
temperature=0.6, | |
speed=1, | |
inp_refs=None, | |
sample_steps=32, | |
if_sr=False, | |
spk="default", | |
): | |
infer_sovits = speaker_list[spk].sovits | |
vq_model = infer_sovits.vq_model | |
hps = infer_sovits.hps | |
version = vq_model.version | |
infer_gpt = speaker_list[spk].gpt | |
t2s_model = infer_gpt.t2s_model | |
max_sec = infer_gpt.max_sec | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
if prompt_text[-1] not in splits: | |
prompt_text += "。" if prompt_language != "en" else "." | |
prompt_language, text = prompt_language, text.strip("\n") | |
dtype = torch.float16 if is_half == True else torch.float32 | |
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
if version != "v3": | |
refers = [] | |
if inp_refs: | |
for path in inp_refs: | |
try: | |
refer = get_spepc(hps, path).to(dtype).to(device) | |
refers.append(refer) | |
except Exception as e: | |
logger.error(e) | |
if len(refers) == 0: | |
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] | |
else: | |
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype) | |
t1 = ttime() | |
# os.environ['version'] = version | |
prompt_language = dict_language[prompt_language.lower()] | |
text_language = dict_language[text_language.lower()] | |
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version) | |
texts = text.split("\n") | |
audio_bytes = BytesIO() | |
for text in texts: | |
# 简单防止纯符号引发参考音频泄露 | |
if only_punc(text): | |
continue | |
audio_opt = [] | |
if text[-1] not in splits: | |
text += "。" if text_language != "en" else "." | |
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
early_stop_num=hz * max_sec, | |
) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) | |
t3 = ttime() | |
if version != "v3": | |
audio = ( | |
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
else: | |
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0) | |
phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0) | |
# print(11111111, phoneme_ids0, phoneme_ids1) | |
fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer) | |
ref_audio, sr = torchaudio.load(ref_wav_path) | |
ref_audio = ref_audio.to(device).float() | |
if ref_audio.shape[0] == 2: | |
ref_audio = ref_audio.mean(0).unsqueeze(0) | |
if sr != 24000: | |
ref_audio = resample(ref_audio, sr) | |
# print("ref_audio",ref_audio.abs().mean()) | |
mel2 = mel_fn(ref_audio) | |
mel2 = norm_spec(mel2) | |
T_min = min(mel2.shape[2], fea_ref.shape[2]) | |
mel2 = mel2[:, :, :T_min] | |
fea_ref = fea_ref[:, :, :T_min] | |
if T_min > 468: | |
mel2 = mel2[:, :, -468:] | |
fea_ref = fea_ref[:, :, -468:] | |
T_min = 468 | |
chunk_len = 934 - T_min | |
# print("fea_ref",fea_ref,fea_ref.shape) | |
# print("mel2",mel2) | |
mel2 = mel2.to(dtype) | |
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed) | |
# print("fea_todo",fea_todo) | |
# print("ge",ge.abs().mean()) | |
cfm_resss = [] | |
idx = 0 | |
while 1: | |
fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len] | |
if fea_todo_chunk.shape[-1] == 0: | |
break | |
idx += chunk_len | |
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) | |
# set_seed(123) | |
cfm_res = vq_model.cfm.inference( | |
fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0 | |
) | |
cfm_res = cfm_res[:, :, mel2.shape[2] :] | |
mel2 = cfm_res[:, :, -T_min:] | |
# print("fea", fea) | |
# print("mel2in", mel2) | |
fea_ref = fea_todo_chunk[:, :, -T_min:] | |
cfm_resss.append(cfm_res) | |
cmf_res = torch.cat(cfm_resss, 2) | |
cmf_res = denorm_spec(cmf_res) | |
if bigvgan_model == None: | |
init_bigvgan() | |
with torch.inference_mode(): | |
wav_gen = bigvgan_model(cmf_res) | |
audio = wav_gen[0][0].cpu().detach().numpy() | |
max_audio = np.abs(audio).max() | |
if max_audio > 1: | |
audio /= max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
audio_opt = np.concatenate(audio_opt, 0) | |
t4 = ttime() | |
sr = hps.data.sampling_rate if version != "v3" else 24000 | |
if if_sr and sr == 24000: | |
audio_opt = torch.from_numpy(audio_opt).float().to(device) | |
audio_opt, sr = audio_sr(audio_opt.unsqueeze(0), sr) | |
max_audio = np.abs(audio_opt).max() | |
if max_audio > 1: | |
audio_opt /= max_audio | |
sr = 48000 | |
if is_int32: | |
audio_bytes = pack_audio(audio_bytes, (audio_opt * 2147483647).astype(np.int32), sr) | |
else: | |
audio_bytes = pack_audio(audio_bytes, (audio_opt * 32768).astype(np.int16), sr) | |
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
if stream_mode == "normal": | |
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes) | |
yield audio_chunk | |
if not stream_mode == "normal": | |
if media_type == "wav": | |
sr = 48000 if if_sr else 24000 | |
sr = hps.data.sampling_rate if version != "v3" else sr | |
audio_bytes = pack_wav(audio_bytes, sr) | |
yield audio_bytes.getvalue() | |
def handle_control(command): | |
if command == "restart": | |
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) | |
elif command == "exit": | |
os.kill(os.getpid(), signal.SIGTERM) | |
exit(0) | |
def handle_change(path, text, language): | |
if is_empty(path, text, language): | |
return JSONResponse( | |
{"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400 | |
) | |
if path != "" or path is not None: | |
default_refer.path = path | |
if text != "" or text is not None: | |
default_refer.text = text | |
if language != "" or language is not None: | |
default_refer.language = language | |
logger.info(f"当前默认参考音频路径: {default_refer.path}") | |
logger.info(f"当前默认参考音频文本: {default_refer.text}") | |
logger.info(f"当前默认参考音频语种: {default_refer.language}") | |
logger.info(f"is_ready: {default_refer.is_ready()}") | |
return JSONResponse({"code": 0, "message": "Success"}, status_code=200) | |
def handle( | |
refer_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
cut_punc, | |
top_k, | |
top_p, | |
temperature, | |
speed, | |
inp_refs, | |
sample_steps, | |
if_sr, | |
): | |
if ( | |
refer_wav_path == "" | |
or refer_wav_path is None | |
or prompt_text == "" | |
or prompt_text is None | |
or prompt_language == "" | |
or prompt_language is None | |
): | |
refer_wav_path, prompt_text, prompt_language = ( | |
default_refer.path, | |
default_refer.text, | |
default_refer.language, | |
) | |
if not default_refer.is_ready(): | |
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400) | |
if sample_steps not in [4, 8, 16, 32]: | |
sample_steps = 32 | |
if cut_punc == None: | |
text = cut_text(text, default_cut_punc) | |
else: | |
text = cut_text(text, cut_punc) | |
return StreamingResponse( | |
get_tts_wav( | |
refer_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
top_k, | |
top_p, | |
temperature, | |
speed, | |
inp_refs, | |
sample_steps, | |
if_sr, | |
), | |
media_type="audio/" + media_type, | |
) | |
# -------------------------------- | |
# 初始化部分 | |
# -------------------------------- | |
dict_language = { | |
"中文": "all_zh", | |
"粤语": "all_yue", | |
"英文": "en", | |
"日文": "all_ja", | |
"韩文": "all_ko", | |
"中英混合": "zh", | |
"粤英混合": "yue", | |
"日英混合": "ja", | |
"韩英混合": "ko", | |
"多语种混合": "auto", # 多语种启动切分识别语种 | |
"多语种混合(粤语)": "auto_yue", | |
"all_zh": "all_zh", | |
"all_yue": "all_yue", | |
"en": "en", | |
"all_ja": "all_ja", | |
"all_ko": "all_ko", | |
"zh": "zh", | |
"yue": "yue", | |
"ja": "ja", | |
"ko": "ko", | |
"auto": "auto", | |
"auto_yue": "auto_yue", | |
} | |
# logger | |
logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG) | |
logger = logging.getLogger("uvicorn") | |
# 获取配置 | |
g_config = global_config.Config() | |
# 获取参数 | |
parser = argparse.ArgumentParser(description="GPT-SoVITS api") | |
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径") | |
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径") | |
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径") | |
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") | |
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") | |
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu") | |
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0") | |
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880") | |
parser.add_argument( | |
"-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度" | |
) | |
parser.add_argument( | |
"-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度" | |
) | |
# bool值的用法为 `python ./api.py -fp ...` | |
# 此时 full_precision==True, half_precision==False | |
parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal / keepalive") | |
parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac") | |
parser.add_argument("-st", "--sub_type", type=str, default="int16", help="音频数据类型, int16 / int32") | |
parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定, 符号范围,.;?!、,。?!;:…") | |
# 切割常用分句符为 `python ./api.py -cp ".?!。?!"` | |
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") | |
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") | |
args = parser.parse_args() | |
sovits_path = args.sovits_path | |
gpt_path = args.gpt_path | |
device = args.device | |
port = args.port | |
host = args.bind_addr | |
cnhubert_base_path = args.hubert_path | |
bert_path = args.bert_path | |
default_cut_punc = args.cut_punc | |
# 应用参数配置 | |
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language) | |
# 模型路径检查 | |
if sovits_path == "": | |
sovits_path = g_config.pretrained_sovits_path | |
logger.warn(f"未指定SoVITS模型路径, fallback后当前值: {sovits_path}") | |
if gpt_path == "": | |
gpt_path = g_config.pretrained_gpt_path | |
logger.warn(f"未指定GPT模型路径, fallback后当前值: {gpt_path}") | |
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用 | |
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "": | |
default_refer.path, default_refer.text, default_refer.language = "", "", "" | |
logger.info("未指定默认参考音频") | |
else: | |
logger.info(f"默认参考音频路径: {default_refer.path}") | |
logger.info(f"默认参考音频文本: {default_refer.text}") | |
logger.info(f"默认参考音频语种: {default_refer.language}") | |
# 获取半精度 | |
is_half = g_config.is_half | |
if args.full_precision: | |
is_half = False | |
if args.half_precision: | |
is_half = True | |
if args.full_precision and args.half_precision: | |
is_half = g_config.is_half # 炒饭fallback | |
logger.info(f"半精: {is_half}") | |
# 流式返回模式 | |
if args.stream_mode.lower() in ["normal", "n"]: | |
stream_mode = "normal" | |
logger.info("流式返回已开启") | |
else: | |
stream_mode = "close" | |
# 音频编码格式 | |
if args.media_type.lower() in ["aac", "ogg"]: | |
media_type = args.media_type.lower() | |
elif stream_mode == "close": | |
media_type = "wav" | |
else: | |
media_type = "ogg" | |
logger.info(f"编码格式: {media_type}") | |
# 音频数据类型 | |
if args.sub_type.lower() == "int32": | |
is_int32 = True | |
logger.info("数据类型: int32") | |
else: | |
is_int32 = False | |
logger.info("数据类型: int16") | |
# 初始化模型 | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
ssl_model = cnhubert.get_model() | |
if is_half: | |
bert_model = bert_model.half().to(device) | |
ssl_model = ssl_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
ssl_model = ssl_model.to(device) | |
change_gpt_sovits_weights(gpt_path=gpt_path, sovits_path=sovits_path) | |
# -------------------------------- | |
# 接口部分 | |
# -------------------------------- | |
app = FastAPI() | |
async def set_model(request: Request): | |
json_post_raw = await request.json() | |
return change_gpt_sovits_weights( | |
gpt_path=json_post_raw.get("gpt_model_path"), sovits_path=json_post_raw.get("sovits_model_path") | |
) | |
async def set_model( | |
gpt_model_path: str = None, | |
sovits_model_path: str = None, | |
): | |
return change_gpt_sovits_weights(gpt_path=gpt_model_path, sovits_path=sovits_model_path) | |
async def control(request: Request): | |
json_post_raw = await request.json() | |
return handle_control(json_post_raw.get("command")) | |
async def control(command: str = None): | |
return handle_control(command) | |
async def change_refer(request: Request): | |
json_post_raw = await request.json() | |
return handle_change( | |
json_post_raw.get("refer_wav_path"), json_post_raw.get("prompt_text"), json_post_raw.get("prompt_language") | |
) | |
async def change_refer(refer_wav_path: str = None, prompt_text: str = None, prompt_language: str = None): | |
return handle_change(refer_wav_path, prompt_text, prompt_language) | |
async def tts_endpoint(request: Request): | |
json_post_raw = await request.json() | |
return handle( | |
json_post_raw.get("refer_wav_path"), | |
json_post_raw.get("prompt_text"), | |
json_post_raw.get("prompt_language"), | |
json_post_raw.get("text"), | |
json_post_raw.get("text_language"), | |
json_post_raw.get("cut_punc"), | |
json_post_raw.get("top_k", 15), | |
json_post_raw.get("top_p", 1.0), | |
json_post_raw.get("temperature", 1.0), | |
json_post_raw.get("speed", 1.0), | |
json_post_raw.get("inp_refs", []), | |
json_post_raw.get("sample_steps", 32), | |
json_post_raw.get("if_sr", False), | |
) | |
async def tts_endpoint( | |
refer_wav_path: str = None, | |
prompt_text: str = None, | |
prompt_language: str = None, | |
text: str = None, | |
text_language: str = None, | |
cut_punc: str = None, | |
top_k: int = 15, | |
top_p: float = 1.0, | |
temperature: float = 1.0, | |
speed: float = 1.0, | |
inp_refs: list = Query(default=[]), | |
sample_steps: int = 32, | |
if_sr: bool = False, | |
): | |
return handle( | |
refer_wav_path, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
cut_punc, | |
top_k, | |
top_p, | |
temperature, | |
speed, | |
inp_refs, | |
sample_steps, | |
if_sr, | |
) | |
if __name__ == "__main__": | |
uvicorn.run(app, host=host, port=port, workers=1) | |