Spaces:
Running
Running
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import logging
|
4 |
+
import json
|
5 |
+
import streamlit as st
|
6 |
+
import pdfplumber
|
7 |
+
from docx import Document
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
from peft import PeftModel
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.DEBUG)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Paths to rubric files
|
17 |
+
P1_RUBRICS_PATH = os.path.join("data", "rubrics", "p1_rubrics.json")
|
18 |
+
P2_RUBRICS_PATH = os.path.join("data", "rubrics", "p2_rubrics.json")
|
19 |
+
|
20 |
+
# Load rubrics from JSON files
|
21 |
+
def load_rubrics(project_type):
|
22 |
+
rubric_file = P1_RUBRICS_PATH if project_type.lower() == "group" else P2_RUBRICS_PATH
|
23 |
+
try:
|
24 |
+
with open(rubric_file, "r") as f:
|
25 |
+
return json.load(f)
|
26 |
+
except FileNotFoundError:
|
27 |
+
raise FileNotFoundError(f"Rubric file not found: {rubric_file}")
|
28 |
+
except json.JSONDecodeError:
|
29 |
+
raise ValueError(f"Error decoding JSON from {rubric_file}")
|
30 |
+
|
31 |
+
# Load model and tokenizer
|
32 |
+
@st.cache_resource
|
33 |
+
def load_model():
|
34 |
+
adapter_model_name = "woyeso/fine_tuned_llama_3_2_assignment_grader"
|
35 |
+
base_model_name = "unsloth/Llama-3.2-3B-Instruct" # Adjust if the base model differs
|
36 |
+
hf_token = os.getenv("HF_TOKEN")
|
37 |
+
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
39 |
+
adapter_model_name,
|
40 |
+
token=hf_token if hf_token else None
|
41 |
+
)
|
42 |
+
|
43 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
base_model_name,
|
45 |
+
torch_dtype=torch.float16,
|
46 |
+
device_map="auto",
|
47 |
+
token=hf_token if hf_token else None
|
48 |
+
)
|
49 |
+
|
50 |
+
model = PeftModel.from_pretrained(base_model, adapter_model_name, token=hf_token if hf_token else None)
|
51 |
+
return model, tokenizer
|
52 |
+
|
53 |
+
model, tokenizer = load_model()
|
54 |
+
|
55 |
+
# Subcomponent mappings (same as original)
|
56 |
+
P1_SUBCOMPONENTS = {
|
57 |
+
'1.1': 'Information of the Service Recipients Found:',
|
58 |
+
'1.2': 'Information Related to the Use of AI in Teaching and Learning:',
|
59 |
+
'1.3': 'Service Project Title and Topics:',
|
60 |
+
'1.4': 'Specific Project Objectives:',
|
61 |
+
'2.1': 'Design of AI-Related Ice-breaking Games:',
|
62 |
+
'2.2': 'Tasks of Each Team Member:',
|
63 |
+
'3.1': 'Specific STEM Elements Covered:',
|
64 |
+
'3.2': 'Student Abilities to Strengthen:',
|
65 |
+
'3.3': 'Potential Learning Hurdles of Students:',
|
66 |
+
'3.4': 'Facilitating STEM and Overcoming Hurdles:',
|
67 |
+
'4.1': 'List of Materials and Parts:',
|
68 |
+
'4.2': 'List of Tools:'
|
69 |
+
}
|
70 |
+
|
71 |
+
P2_SUBCOMPONENTS = {
|
72 |
+
'1.1': 'Specific Learning Objectives:',
|
73 |
+
'1.2': 'Content of Each Teaching Kit:',
|
74 |
+
'2.1': 'Describe the Design of Each Teaching Kit:',
|
75 |
+
'2.2': 'How to Prepare (or Make) Each Item of Your Teaching Kit:',
|
76 |
+
'2.3': 'Explain Why Students Will Learn and Play Happily:',
|
77 |
+
'3.1': 'Draw a Diagram to Illustrate Task Breakdown:',
|
78 |
+
'4.1': 'How to Introduce the Specific Topic(s) to Arouse Interest in STEM:',
|
79 |
+
'4.2': 'How to Identify and Overcome Learning Hurdles:',
|
80 |
+
'5.1': 'How to React to Potential Uncertainties:',
|
81 |
+
'5.2': 'How to Self-Evaluate Performance and Make Improvements:'
|
82 |
+
}
|
83 |
+
|
84 |
+
# Text extraction functions (unchanged)
|
85 |
+
def extract_text_between_strings(text, start_keyword, end_keyword):
|
86 |
+
try:
|
87 |
+
extracted_text = ""
|
88 |
+
start_match = re.search(start_keyword, text, re.MULTILINE)
|
89 |
+
if not start_match:
|
90 |
+
logger.debug(f"Start keyword '{start_keyword}' not found.")
|
91 |
+
return "Not Found"
|
92 |
+
|
93 |
+
start_index = start_match.end()
|
94 |
+
end_match = re.search(end_keyword, text, re.MULTILINE)
|
95 |
+
if end_match and end_match.start() > start_match.start():
|
96 |
+
end_index = end_match.start()
|
97 |
+
extracted_text = text[start_index:end_index].strip()
|
98 |
+
else:
|
99 |
+
extracted_text = text[start_index:].strip()
|
100 |
+
|
101 |
+
if not extracted_text:
|
102 |
+
logger.debug(f"End keyword '{end_keyword}' not found or no content extracted.")
|
103 |
+
return "Not Found"
|
104 |
+
|
105 |
+
lines = extracted_text.split('\n')
|
106 |
+
formatted_lines = []
|
107 |
+
bullet_pattern = re.compile(r'^\s*(\d+\.|\•|-|◦|➢)\s*(.+)$')
|
108 |
+
for line in lines:
|
109 |
+
line = line.strip()
|
110 |
+
if not line:
|
111 |
+
continue
|
112 |
+
bullet_match = bullet_pattern.match(line)
|
113 |
+
if bullet_match:
|
114 |
+
bullet, text = bullet_match.groups()
|
115 |
+
formatted_lines.append(f"{bullet} {text}")
|
116 |
+
else:
|
117 |
+
formatted_lines.append(line)
|
118 |
+
cleaned_text = "\n".join(formatted_lines).strip()
|
119 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text.replace('\n', '\n '))
|
120 |
+
return cleaned_text.replace("XYZ students", "Hong Chi students")
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
logger.error(f"Error extracting text: {e}")
|
124 |
+
return f"Error: {e}"
|
125 |
+
|
126 |
+
def extract_text_from_pdf(filepath, assignment_type='P1'):
|
127 |
+
results = {}
|
128 |
+
subcomponents = P1_SUBCOMPONENTS if assignment_type == 'P1' else P2_SUBCOMPONENTS
|
129 |
+
sorted_codes = sorted(subcomponents.keys(), key=lambda x: [int(n) for n in x.split('.')])
|
130 |
+
|
131 |
+
with pdfplumber.open(filepath) as pdf:
|
132 |
+
text = ""
|
133 |
+
for page in pdf.pages:
|
134 |
+
page_text = page.extract_text() or ""
|
135 |
+
text += page_text + "\n"
|
136 |
+
|
137 |
+
for i, code in enumerate(sorted_codes):
|
138 |
+
start_keyword = r"^{}\s*[.:]?\s*".format(re.escape(code))
|
139 |
+
if i + 1 < len(sorted_codes):
|
140 |
+
end_keyword = r"^{}\s*[.:]?\s*".format(re.escape(sorted_codes[i + 1]))
|
141 |
+
else:
|
142 |
+
end_keyword = r"^5\.\s*" if assignment_type == 'P1' else r"^6\.\s*"
|
143 |
+
|
144 |
+
logger.debug(f"Extracting section {code} with start_keyword={start_keyword}, end_keyword={end_keyword}")
|
145 |
+
content = extract_text_between_strings(text, start_keyword, end_keyword)
|
146 |
+
results[code] = {
|
147 |
+
"title": subcomponents[code],
|
148 |
+
"content": content
|
149 |
+
}
|
150 |
+
|
151 |
+
return results
|
152 |
+
|
153 |
+
def extract_text_from_docx(filepath, assignment_type='P1'):
|
154 |
+
try:
|
155 |
+
doc = Document(filepath)
|
156 |
+
elements = []
|
157 |
+
for para in doc.paragraphs:
|
158 |
+
text = para.text.strip()
|
159 |
+
if text:
|
160 |
+
style = para.style.name
|
161 |
+
elements.append(('paragraph', text, style))
|
162 |
+
for table in doc.tables:
|
163 |
+
table_text = []
|
164 |
+
for row in table.rows:
|
165 |
+
row_text = [cell.text.strip() for cell in row.cells if cell.text.strip()]
|
166 |
+
if row_text:
|
167 |
+
table_text.append(" ".join(row_text))
|
168 |
+
if table_text:
|
169 |
+
elements.append(('table', "\n".join(table_text), 'Table'))
|
170 |
+
|
171 |
+
logger.debug(f"Extracted {len(elements)} elements from DOCX")
|
172 |
+
|
173 |
+
results = {}
|
174 |
+
subcomponents = P1_SUBCOMPONENTS if assignment_type == 'P1' else P2_SUBCOMPONENTS
|
175 |
+
sorted_codes = sorted(subcomponents.keys(), key=lambda x: [int(n) for n in x.split('.')])
|
176 |
+
|
177 |
+
current_section = None
|
178 |
+
section_content = []
|
179 |
+
section_pattern = re.compile(r'^\s*(\d+\.\d+\.?)\s*[.:]?\s*(.*)?$')
|
180 |
+
end_pattern = re.compile(r'^\s*5\.\s*' if assignment_type == 'P1' else r'^\s*6\.\s*')
|
181 |
+
bullet_pattern = re.compile(r'^\s*(\d+\.|\•|-|◦|➢)\s*(.+)$')
|
182 |
+
|
183 |
+
for i, (elem_type, text, style) in enumerate(elements):
|
184 |
+
logger.debug(f"Processing element {i}: type={elem_type}, style={style}, text={text[:100]}...")
|
185 |
+
|
186 |
+
lines = text.split('\n')
|
187 |
+
for line in lines:
|
188 |
+
line = line.strip()
|
189 |
+
if not line:
|
190 |
+
continue
|
191 |
+
|
192 |
+
section_match = section_pattern.match(line)
|
193 |
+
if section_match:
|
194 |
+
code, title = section_match.groups()
|
195 |
+
code = code.rstrip('.')
|
196 |
+
if current_section and current_section in subcomponents:
|
197 |
+
formatted_lines = []
|
198 |
+
for content_line in section_content:
|
199 |
+
bullet_match = bullet_pattern.match(content_line)
|
200 |
+
if bullet_match:
|
201 |
+
bullet, text = bullet_match.groups()
|
202 |
+
formatted_lines.append(f"{bullet} {text}")
|
203 |
+
else:
|
204 |
+
formatted_lines.append(content_line)
|
205 |
+
cleaned_content = "\n".join(formatted_lines).strip()
|
206 |
+
cleaned_content = re.sub(r'\s+', ' ', cleaned_content.replace('\n', '\n '))
|
207 |
+
cleaned_content = cleaned_content.replace("XYZ students", "Hong Chi students")
|
208 |
+
results[current_section] = {
|
209 |
+
"title": subcomponents[current_section],
|
210 |
+
"content": cleaned_content if cleaned_content else "Not Found"
|
211 |
+
}
|
212 |
+
current_section = code
|
213 |
+
section_content = []
|
214 |
+
if title:
|
215 |
+
section_content.append(title)
|
216 |
+
logger.debug(f"Started section {code} at element {i}")
|
217 |
+
continue
|
218 |
+
|
219 |
+
end_match = end_pattern.match(line)
|
220 |
+
if end_match and current_section:
|
221 |
+
formatted_lines = []
|
222 |
+
for content_line in section_content:
|
223 |
+
bullet_match = bullet_pattern.match(content_line)
|
224 |
+
if bullet_match:
|
225 |
+
bullet, text = bullet_match.groups()
|
226 |
+
formatted_lines.append(f"{bullet} {text}")
|
227 |
+
else:
|
228 |
+
formatted_lines.append(content_line)
|
229 |
+
cleaned_content = "\n".join(formatted_lines).strip()
|
230 |
+
cleaned_content = re.sub(r'\s+', ' ', cleaned_content.replace('\n', '\n '))
|
231 |
+
cleaned_content = cleaned_content.replace("XYZ students", "Hong Chi students")
|
232 |
+
results[current_section] = {
|
233 |
+
"title": subcomponents[current_section],
|
234 |
+
"content": cleaned_content if cleaned_content else "Not Found"
|
235 |
+
}
|
236 |
+
current_section = None
|
237 |
+
section_content = []
|
238 |
+
logger.debug(f"Ended section at element {i} with end marker")
|
239 |
+
continue
|
240 |
+
|
241 |
+
if current_section:
|
242 |
+
if style.startswith('List') or bullet_pattern.match(line):
|
243 |
+
bullet_match = bullet_pattern.match(line)
|
244 |
+
if bullet_match:
|
245 |
+
bullet, text = bullet_match.groups()
|
246 |
+
section_content.append(f"{bullet} {text}")
|
247 |
+
else:
|
248 |
+
section_content.append(f"- {line}")
|
249 |
+
else:
|
250 |
+
section_content.append(line)
|
251 |
+
|
252 |
+
if current_section and current_section in subcomponents:
|
253 |
+
formatted_lines = []
|
254 |
+
for content_line in section_content:
|
255 |
+
bullet_match = bullet_pattern.match(content_line)
|
256 |
+
if bullet_match:
|
257 |
+
bullet, text = bullet_match.groups()
|
258 |
+
formatted_lines.append(f"{bullet} {text}")
|
259 |
+
else:
|
260 |
+
formatted_lines.append(content_line)
|
261 |
+
cleaned_content = "\n".join(formatted_lines).strip()
|
262 |
+
cleaned_content = re.sub(r'\s+', ' ', cleaned_content.replace('\n', '\n '))
|
263 |
+
cleaned_content = cleaned_content.replace("XYZ students", "Hong Chi students")
|
264 |
+
results[current_section] = {
|
265 |
+
"title": subcomponents[current_section],
|
266 |
+
"content": cleaned_content if cleaned_content else "Not Found"
|
267 |
+
}
|
268 |
+
|
269 |
+
for code in sorted_codes:
|
270 |
+
if code not in results:
|
271 |
+
results[code] = {
|
272 |
+
"title": subcomponents[code],
|
273 |
+
"content": "Not Found"
|
274 |
+
}
|
275 |
+
logger.debug(f"Subcomponent {code} not found in DOCX")
|
276 |
+
|
277 |
+
return results
|
278 |
+
|
279 |
+
except Exception as e:
|
280 |
+
logger.error(f"Error extracting text from DOCX: {e}")
|
281 |
+
return {}
|
282 |
+
|
283 |
+
# Function to evaluate submission using the model
|
284 |
+
def evaluate_submission(subcomponent, project_type, rubric, submission, school_name):
|
285 |
+
prompt = (
|
286 |
+
f"Can you evaluate my project submission for Subcomponent {subcomponent} in a {project_type} project (P1 for group, P2 for individual).\n"
|
287 |
+
f"Here is the rubric: {rubric}. Evaluate the submission against each rubric criterion. Focus on the rubric criteria as the primary basis for your evaluation.\n"
|
288 |
+
f"My submission is {submission}.\n\n"
|
289 |
+
f"If a school name is provided, use it in your evaluation: {school_name}. If no school name is provided, refer to the students generically as 'students'.\n"
|
290 |
+
f"Do not use the placeholder 'XYZ students' in your evaluation, as it was used during training but should be replaced with the specific school name or 'students'.\n\n"
|
291 |
+
f"Summarize the strengths of the submission (what it does well according to the rubric).\n"
|
292 |
+
f"Summarize the weaknesses of the submission (where it falls short according to the rubric).\n"
|
293 |
+
f"Provide specific suggestions for improvement to help the student improve their submission.\n\n"
|
294 |
+
f"Give me an overall mark out of 10, and don't be too strict. Ensure you provide the score in the format: <Overall Mark: X/10>. Do not omit the score and follow format of X/10."
|
295 |
+
)
|
296 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
297 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
298 |
+
|
299 |
+
with torch.no_grad():
|
300 |
+
outputs = model.generate(
|
301 |
+
input_ids=inputs["input_ids"],
|
302 |
+
attention_mask=inputs["attention_mask"],
|
303 |
+
max_new_tokens=256,
|
304 |
+
temperature=0.7,
|
305 |
+
top_p=0.9,
|
306 |
+
do_sample=True
|
307 |
+
)
|
308 |
+
feedback = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
309 |
+
return feedback
|
310 |
+
|
311 |
+
# Streamlit app
|
312 |
+
st.title("Assignment Grader App")
|
313 |
+
|
314 |
+
# File upload
|
315 |
+
uploaded_file = st.file_uploader("Upload PDF/DOCX", type=["pdf", "docx"])
|
316 |
+
project_type = st.selectbox("Project Type", ["Group (P1)", "Individual (P2)"])
|
317 |
+
school_name = st.text_input("School Name (Optional)")
|
318 |
+
group_number = st.text_input("Group Number (Optional)")
|
319 |
+
|
320 |
+
# Manual text input as fallback
|
321 |
+
manual_text = st.text_area("Or enter your submission text manually (optional)")
|
322 |
+
|
323 |
+
if st.button("Evaluate"):
|
324 |
+
if uploaded_file or manual_text:
|
325 |
+
# Load rubrics
|
326 |
+
project_type_short = "Group" if project_type == "Group (P1)" else "Individual"
|
327 |
+
project = "P1" if project_type == "Group (P1)" else "P2"
|
328 |
+
try:
|
329 |
+
rubrics = load_rubrics(project_type_short)
|
330 |
+
except Exception as e:
|
331 |
+
st.error(f"Error loading rubrics: {str(e)}")
|
332 |
+
st.stop()
|
333 |
+
|
334 |
+
# Extract text from file or use manual input
|
335 |
+
submission_dict = {}
|
336 |
+
if uploaded_file:
|
337 |
+
with open("/tmp/uploaded_file", "wb") as f:
|
338 |
+
f.write(uploaded_file.read())
|
339 |
+
|
340 |
+
if uploaded_file.name.endswith(".pdf"):
|
341 |
+
results = extract_text_from_pdf("/tmp/uploaded_file", project)
|
342 |
+
else:
|
343 |
+
results = extract_text_from_docx("/tmp/uploaded_file", project)
|
344 |
+
os.remove("/tmp/uploaded_file")
|
345 |
+
|
346 |
+
for subcomponent, data in results.items():
|
347 |
+
if data["content"] != "Not Found":
|
348 |
+
submission_dict[subcomponent] = data["content"]
|
349 |
+
else:
|
350 |
+
submission_dict["1.1"] = manual_text # Simplified for manual input; adjust as needed
|
351 |
+
|
352 |
+
if not submission_dict:
|
353 |
+
st.error("No text extracted from the file or provided manually.")
|
354 |
+
st.stop()
|
355 |
+
|
356 |
+
# Evaluate submissions
|
357 |
+
evaluations = []
|
358 |
+
total_score = 0
|
359 |
+
total_weight = 0
|
360 |
+
|
361 |
+
with st.spinner("Evaluating submission..."):
|
362 |
+
for rubric in rubrics:
|
363 |
+
subcomponent = rubric["subcomponent"]
|
364 |
+
if subcomponent not in submission_dict:
|
365 |
+
continue
|
366 |
+
|
367 |
+
submission = submission_dict[subcomponent]
|
368 |
+
evaluation = evaluate_submission(
|
369 |
+
subcomponent,
|
370 |
+
project_type_short,
|
371 |
+
rubric["criteria"],
|
372 |
+
submission,
|
373 |
+
school_name if school_name else "Not provided"
|
374 |
+
)
|
375 |
+
|
376 |
+
if school_name:
|
377 |
+
evaluation = evaluation.replace("XYZ students", f"{school_name} students")
|
378 |
+
else:
|
379 |
+
evaluation = evaluation.replace("XYZ students", "students")
|
380 |
+
|
381 |
+
score_match = re.search(r"Overall Mark:\s*([\d.]+)(?:\s*/\s*10)?", evaluation, re.IGNORECASE)
|
382 |
+
score = float(score_match.group(1)) if score_match else 0
|
383 |
+
|
384 |
+
weight = rubric.get("weight", 1.0)
|
385 |
+
total_score += score * weight
|
386 |
+
total_weight += weight
|
387 |
+
|
388 |
+
evaluations.append({
|
389 |
+
"subcomponent": subcomponent,
|
390 |
+
"evaluation": evaluation,
|
391 |
+
"score": score,
|
392 |
+
"weight": weight
|
393 |
+
})
|
394 |
+
|
395 |
+
# Calculate final grade
|
396 |
+
final_grade = (total_score / total_weight) * 10 if total_weight > 0 else 0
|
397 |
+
final_grade = round(final_grade, 2)
|
398 |
+
|
399 |
+
# Display results
|
400 |
+
group_display = f" {group_number}" if group_number else ""
|
401 |
+
summary = f"**Summary of Evaluations for {project} Project (Group{group_display})**\n\n"
|
402 |
+
separator = "********************************************************************\n"
|
403 |
+
for i, eval in enumerate(evaluations):
|
404 |
+
summary += f"**Subcomponent {eval['subcomponent']} (Weight: {eval['weight']*100}%)**\n"
|
405 |
+
summary += eval["evaluation"]
|
406 |
+
summary += "\n\n"
|
407 |
+
if i < len(evaluations) - 1:
|
408 |
+
summary += separator
|
409 |
+
|
410 |
+
summary += f"**Final Total Grade: {final_grade}%**"
|
411 |
+
|
412 |
+
st.subheader("Evaluation Results")
|
413 |
+
st.markdown(summary)
|
414 |
+
else:
|
415 |
+
st.error("Please upload a file or enter text manually.")
|