woutn-223 commited on
Commit
cfe3e94
·
verified ·
1 Parent(s): e7f9304

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ from PIL import Image
3
+ import gradio as gr
4
+
5
+ # Load models
6
+ text_model = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
7
+ image_model = pipeline("image-classification", model="prithivMLmods/Deep-Fake-Detector-v2-Model")
8
+
9
+ # Text detection function
10
+ def detect_text_misinformation(text):
11
+ if not text.strip():
12
+ return "Please enter some text.", None
13
+ result = text_model(text)[0]
14
+ return f"Prediction: {result['label']}", f"Confidence: {result['score']:.2f}"
15
+
16
+ # Image detection function
17
+ def detect_image_deepfake(image):
18
+ result = image_model(image)[0]
19
+ label_map = {
20
+ "LABEL_0": ("Unauthentic", "❌"),
21
+ "LABEL_1": ("Authentic", "✅")
22
+ }
23
+ label, icon = label_map.get(result['label'].upper(), (result['label'], "❓"))
24
+ return f"{icon} Prediction: {label}", f"Confidence: {result['score']:.2f}"
25
+
26
+ # Gradio Interface
27
+ text_interface = gr.Interface(
28
+ fn=detect_text_misinformation,
29
+ inputs=gr.Textbox(lines=3, placeholder="Enter a news statement or claim..."),
30
+ outputs=["text", "text"],
31
+ title="📰 Misinformation Detection"
32
+ )
33
+
34
+ image_interface = gr.Interface(
35
+ fn=detect_image_deepfake,
36
+ inputs=gr.Image(type="pil"),
37
+ outputs=["text", "text"],
38
+ title="🖼️ Deepfake Image Detection"
39
+ )
40
+
41
+ demo = gr.TabbedInterface([text_interface, image_interface], ["Text Misinformation", "Image Deepfake"])
42
+ demo.launch()