Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for
|
21 |
-
if
|
22 |
-
messages.append({"role": "user", "content":
|
23 |
-
if
|
24 |
-
messages.append({"role": "assistant", "content":
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "wop/kosmox-gguf"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModel.from_pretrained(model_name)
|
9 |
|
10 |
+
# Function to generate responses
|
11 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
12 |
+
# Prepare the chat history
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
messages = [{"role": "system", "content": system_message}]
|
14 |
+
|
15 |
+
for user_msg, bot_msg in history:
|
16 |
+
if user_msg:
|
17 |
+
messages.append({"role": "user", "content": user_msg})
|
18 |
+
if bot_msg:
|
19 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
20 |
+
|
21 |
messages.append({"role": "user", "content": message})
|
22 |
|
23 |
+
# Create the chat input for the model
|
24 |
+
chat_input = tokenizer.chat_template.format(
|
25 |
+
bos_token=tokenizer.bos_token,
|
26 |
+
messages=[{"from": "human", "value": m['content']} if m['role'] == 'user' else {"from": "gpt", "value": m['content']} for m in messages]
|
27 |
+
)
|
28 |
+
|
29 |
+
inputs = tokenizer(chat_input, return_tensors="pt")
|
30 |
+
|
31 |
+
# Generate response
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model.generate(
|
34 |
+
input_ids=inputs['input_ids'],
|
35 |
+
max_length=max_tokens,
|
36 |
+
temperature=temperature,
|
37 |
+
top_p=top_p,
|
38 |
+
do_sample=True
|
39 |
+
)
|
40 |
+
|
41 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
yield response.strip()
|
43 |
+
|
44 |
+
# Define the Gradio interface
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
],
|
53 |
)
|
54 |
|
55 |
+
# Launch the demo
|
56 |
if __name__ == "__main__":
|
57 |
+
demo.launch()
|