wop commited on
Commit
e44990b
1 Parent(s): e03b85e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -47
app.py CHANGED
@@ -1,63 +1,57 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
 
 
 
 
 
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModel, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the model and tokenizer
6
+ model_name = "wop/kosmox-gguf"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModel.from_pretrained(model_name)
9
 
10
+ # Function to generate responses
11
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
12
+ # Prepare the chat history
 
 
 
 
 
 
13
  messages = [{"role": "system", "content": system_message}]
14
+
15
+ for user_msg, bot_msg in history:
16
+ if user_msg:
17
+ messages.append({"role": "user", "content": user_msg})
18
+ if bot_msg:
19
+ messages.append({"role": "assistant", "content": bot_msg})
20
+
21
  messages.append({"role": "user", "content": message})
22
 
23
+ # Create the chat input for the model
24
+ chat_input = tokenizer.chat_template.format(
25
+ bos_token=tokenizer.bos_token,
26
+ messages=[{"from": "human", "value": m['content']} if m['role'] == 'user' else {"from": "gpt", "value": m['content']} for m in messages]
27
+ )
28
+
29
+ inputs = tokenizer(chat_input, return_tensors="pt")
30
+
31
+ # Generate response
32
+ with torch.no_grad():
33
+ outputs = model.generate(
34
+ input_ids=inputs['input_ids'],
35
+ max_length=max_tokens,
36
+ temperature=temperature,
37
+ top_p=top_p,
38
+ do_sample=True
39
+ )
40
+
41
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
+ yield response.strip()
43
+
44
+ # Define the Gradio interface
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
52
  ],
53
  )
54
 
55
+ # Launch the demo
56
  if __name__ == "__main__":
57
+ demo.launch()