Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ from dotenv import find_dotenv, load_dotenv
|
|
3 |
import streamlit as st
|
4 |
from typing import Generator
|
5 |
from groq import Groq
|
6 |
-
import
|
7 |
-
|
8 |
|
9 |
_ = load_dotenv(find_dotenv())
|
10 |
st.set_page_config(page_icon="💬", layout="wide", page_title="Groq Chat Bot...")
|
@@ -16,24 +16,22 @@ def icon(emoji: str):
|
|
16 |
unsafe_allow_html=True,
|
17 |
)
|
18 |
|
19 |
-
icon("
|
20 |
|
21 |
-
st.subheader("
|
22 |
|
23 |
-
client = Groq(
|
24 |
-
|
25 |
-
|
26 |
-
st.session_state.messages = []
|
27 |
-
|
28 |
-
if "selected_model" not in st.session_state:
|
29 |
-
st.session_state.selected_model = None
|
30 |
|
31 |
models = {
|
32 |
-
"mixtral-8x7b-32768": {
|
33 |
-
|
|
|
|
|
|
|
34 |
"llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
|
35 |
-
"
|
36 |
-
"llama3-8b-8192": {"name": "LLaMA3-8b-8192", "tokens": 8192, "developer": "Meta"},
|
37 |
}
|
38 |
|
39 |
col1, col2 = st.columns(2)
|
@@ -43,9 +41,15 @@ with col1:
|
|
43 |
"Choose a model:",
|
44 |
options=list(models.keys()),
|
45 |
format_func=lambda x: models[x]["name"],
|
46 |
-
index=0,
|
47 |
)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
if st.session_state.selected_model != model_option:
|
50 |
st.session_state.messages = []
|
51 |
st.session_state.selected_model = model_option
|
@@ -55,7 +59,7 @@ max_tokens_range = models[model_option]["tokens"]
|
|
55 |
with col2:
|
56 |
max_tokens = st.slider(
|
57 |
"Max Tokens:",
|
58 |
-
min_value=512,
|
59 |
max_value=max_tokens_range,
|
60 |
value=min(32768, max_tokens_range),
|
61 |
step=512,
|
@@ -72,57 +76,80 @@ def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
|
|
72 |
for chunk in chat_completion:
|
73 |
if chunk.choices[0].delta.content:
|
74 |
yield chunk.choices[0].delta.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
for image in images:
|
115 |
-
a_tag = image.find('a')
|
116 |
-
title = a_tag['title'] if 'title' in a_tag.attrs else ''
|
117 |
-
url = a_tag['href'] if 'href' in a_tag.attrs else ''
|
118 |
-
item = {"title": title, "url": url, "snippet": ''}
|
119 |
-
result["data"]["images"].append(item)
|
120 |
-
else:
|
121 |
-
result["error"] = "Failed to retrieve search results"
|
122 |
-
except Exception as e:
|
123 |
-
result["error"] = f"An error occurred: {e}"
|
124 |
-
return result
|
125 |
-
full_response = None # Initialize full_response to None
|
126 |
|
127 |
if prompt := st.chat_input("Enter your prompt here..."):
|
128 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
@@ -131,38 +158,28 @@ if prompt := st.chat_input("Enter your prompt here..."):
|
|
131 |
st.markdown(prompt)
|
132 |
|
133 |
try:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
],
|
148 |
-
max_tokens=max_tokens,
|
149 |
-
stream=True,
|
150 |
-
)
|
151 |
-
|
152 |
-
with st.chat_message("assistant", avatar="🤖"):
|
153 |
-
chat_responses_generator = generate_chat_responses(chat_completion)
|
154 |
-
full_response = st.write_stream(chat_responses_generator)
|
155 |
except Exception as e:
|
156 |
st.error(e, icon="🚨")
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
{"role": "assistant", "content": combined_response}
|
168 |
-
)
|
|
|
3 |
import streamlit as st
|
4 |
from typing import Generator
|
5 |
from groq import Groq
|
6 |
+
import datetime
|
7 |
+
import json
|
8 |
|
9 |
_ = load_dotenv(find_dotenv())
|
10 |
st.set_page_config(page_icon="💬", layout="wide", page_title="Groq Chat Bot...")
|
|
|
16 |
unsafe_allow_html=True,
|
17 |
)
|
18 |
|
19 |
+
icon("📣")
|
20 |
|
21 |
+
st.subheader("Groq Chat Streamlit App", divider="rainbow", anchor=False)
|
22 |
|
23 |
+
client = Groq(
|
24 |
+
api_key=os.environ['GROQ_API_KEY'],
|
25 |
+
)
|
|
|
|
|
|
|
|
|
26 |
|
27 |
models = {
|
28 |
+
"mixtral-8x7b-32768": {
|
29 |
+
"name": "Mixtral-8x7b-Instruct-v0.1",
|
30 |
+
"tokens": 32768,
|
31 |
+
"developer": "Mistral",
|
32 |
+
},
|
33 |
"llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
|
34 |
+
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
|
|
|
35 |
}
|
36 |
|
37 |
col1, col2 = st.columns(2)
|
|
|
41 |
"Choose a model:",
|
42 |
options=list(models.keys()),
|
43 |
format_func=lambda x: models[x]["name"],
|
44 |
+
index=0,
|
45 |
)
|
46 |
|
47 |
+
if "messages" not in st.session_state:
|
48 |
+
st.session_state.messages = []
|
49 |
+
|
50 |
+
if "selected_model" not in st.session_state:
|
51 |
+
st.session_state.selected_model = None
|
52 |
+
|
53 |
if st.session_state.selected_model != model_option:
|
54 |
st.session_state.messages = []
|
55 |
st.session_state.selected_model = model_option
|
|
|
59 |
with col2:
|
60 |
max_tokens = st.slider(
|
61 |
"Max Tokens:",
|
62 |
+
min_value=512,
|
63 |
max_value=max_tokens_range,
|
64 |
value=min(32768, max_tokens_range),
|
65 |
step=512,
|
|
|
76 |
for chunk in chat_completion:
|
77 |
if chunk.choices[0].delta.content:
|
78 |
yield chunk.choices[0].delta.content
|
79 |
+
if chunk.choices[0].message.tool_calls:
|
80 |
+
for tool_call in chunk.choices[0].message.tool_calls:
|
81 |
+
function_name = tool_call.function.name
|
82 |
+
if function_name == "time_date":
|
83 |
+
owner_info = get_tool_owner_info()
|
84 |
+
yield owner_info
|
85 |
+
|
86 |
+
def run_conversation(user_prompt):
|
87 |
+
messages=[
|
88 |
+
{
|
89 |
+
"role": "system",
|
90 |
+
"content": "You are a helpful assistant named ChattyBot."
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": user_prompt,
|
95 |
+
}
|
96 |
+
]
|
97 |
+
tools = [
|
98 |
+
{
|
99 |
+
"type": "function",
|
100 |
+
"function": {
|
101 |
+
"name": "time_date",
|
102 |
+
"description": "The tool will return information about the time and date to the AI.",
|
103 |
+
"parameters": {},
|
104 |
+
},
|
105 |
+
}
|
106 |
+
]
|
107 |
+
response = client.chat.completions.create(
|
108 |
+
model=model_option,
|
109 |
+
messages=messages,
|
110 |
+
tools=tools,
|
111 |
+
tool_choice="auto",
|
112 |
+
max_tokens=4096
|
113 |
+
)
|
114 |
|
115 |
+
response_message = response.choices[0].message
|
116 |
+
tool_calls = response_message.tool_calls
|
117 |
+
|
118 |
+
if tool_calls:
|
119 |
+
available_functions = {
|
120 |
+
"time_date": get_tool_owner_info
|
121 |
+
}
|
122 |
+
|
123 |
+
messages.append(response_message)
|
124 |
+
|
125 |
+
for tool_call in tool_calls:
|
126 |
+
function_name = tool_call.function.name
|
127 |
+
function_to_call = available_functions[function_name]
|
128 |
+
function_args = json.loads(tool_call.function.arguments)
|
129 |
+
function_response = function_to_call(**function_args)
|
130 |
+
messages.append(
|
131 |
+
{
|
132 |
+
"tool_call_id": tool_call.id,
|
133 |
+
"role": "tool",
|
134 |
+
"name": function_name,
|
135 |
+
"content": function_response,
|
136 |
+
}
|
137 |
+
)
|
138 |
+
|
139 |
+
second_response = client.chat.completions.create(
|
140 |
+
model=model_option,
|
141 |
+
messages=messages
|
142 |
+
)
|
143 |
+
|
144 |
+
return second_response.choices[0].message.content
|
145 |
+
else:
|
146 |
+
return response_message.content
|
147 |
+
|
148 |
+
def get_tool_owner_info():
|
149 |
+
owner_info = {
|
150 |
+
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
151 |
+
}
|
152 |
+
return json.dumps(owner_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
if prompt := st.chat_input("Enter your prompt here..."):
|
155 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
158 |
st.markdown(prompt)
|
159 |
|
160 |
try:
|
161 |
+
chat_completion = client.chat.completions.create(
|
162 |
+
model=model_option,
|
163 |
+
messages=[
|
164 |
+
{"role": m["role"], "content": m["content"]}
|
165 |
+
for m in st.session_state.messages
|
166 |
+
],
|
167 |
+
max_tokens=max_tokens,
|
168 |
+
stream=True,
|
169 |
+
)
|
170 |
+
|
171 |
+
with st.chat_message("assistant", avatar="🤖"):
|
172 |
+
chat_responses_generator = generate_chat_responses(chat_completion)
|
173 |
+
full_response = st.write_stream(chat_responses_generator)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
except Exception as e:
|
175 |
st.error(e, icon="🚨")
|
176 |
|
177 |
+
if isinstance(full_response, str):
|
178 |
+
st.session_state.messages.append(
|
179 |
+
{"role": "assistant", "content": full_response}
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
combined_response = "\n".join(str(item) for item in full_response)
|
183 |
+
st.session_state.messages.append(
|
184 |
+
{"role": "assistant", "content": combined_response}
|
185 |
+
)
|
|
|
|