Spaces:
Running
Running
Annas Dev
commited on
Commit
•
319e2a1
1
Parent(s):
8f93744
finish vit
Browse files- app.py +4 -22
- src/model/simlarity_model.py +2 -1
- src/similarity/model_implements/vit_base.py +9 -10
- src/similarity/similarity.py +8 -4
- src/util/image.py +6 -3
app.py
CHANGED
@@ -7,27 +7,9 @@ from src.similarity.similarity import Similarity
|
|
7 |
similarity = Similarity()
|
8 |
models = similarity.get_models()
|
9 |
|
10 |
-
def check(img_main, img_1, img_2, model_idx):
|
11 |
-
|
12 |
-
|
13 |
-
[
|
14 |
-
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
|
15 |
-
"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
|
16 |
-
"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
|
17 |
-
"https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
|
18 |
-
"https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80",
|
19 |
-
]
|
20 |
-
), f"label {i}" if i != 0 else "label" * 50)
|
21 |
-
for i in range(3)
|
22 |
-
]
|
23 |
-
similarity.check_similarity([img_main, img_1, img_2], models[model_idx])
|
24 |
-
return []
|
25 |
-
|
26 |
-
# def greet(name):
|
27 |
-
# return "Hello " + name + "!!"
|
28 |
-
|
29 |
-
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
30 |
-
# iface.launch()
|
31 |
|
32 |
with gr.Blocks() as demo:
|
33 |
gr.Markdown('Checking Image Similarity')
|
@@ -41,7 +23,7 @@ with gr.Blocks() as demo:
|
|
41 |
model = gr.Dropdown([m.name for m in models], label='Model', type='index')
|
42 |
|
43 |
gallery = gr.Gallery(
|
44 |
-
label="Generated images", show_label=
|
45 |
).style(grid=[2], height="auto")
|
46 |
|
47 |
submit_btn = gr.Button('Check Similarity')
|
|
|
7 |
similarity = Similarity()
|
8 |
models = similarity.get_models()
|
9 |
|
10 |
+
def check(img_main, img_1, img_2, model_idx):
|
11 |
+
result = similarity.check_similarity([img_main, img_1, img_2], models[model_idx])
|
12 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
with gr.Blocks() as demo:
|
15 |
gr.Markdown('Checking Image Similarity')
|
|
|
23 |
model = gr.Dropdown([m.name for m in models], label='Model', type='index')
|
24 |
|
25 |
gallery = gr.Gallery(
|
26 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
27 |
).style(grid=[2], height="auto")
|
28 |
|
29 |
submit_btn = gr.Button('Check Similarity')
|
src/model/simlarity_model.py
CHANGED
@@ -5,4 +5,5 @@ from .similarity_interface import SimilarityInterface
|
|
5 |
class SimilarityModel:
|
6 |
name: str
|
7 |
image_size: int
|
8 |
-
model_cls: SimilarityInterface
|
|
|
|
5 |
class SimilarityModel:
|
6 |
name: str
|
7 |
image_size: int
|
8 |
+
model_cls: SimilarityInterface
|
9 |
+
image_input_type: str = 'array'
|
src/similarity/model_implements/vit_base.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
-
from transformers import ViTFeatureExtractor,
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
class VitBase():
|
6 |
|
7 |
def __init__(self):
|
8 |
-
self.feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
|
9 |
-
self.model =
|
10 |
|
11 |
def extract_feature(self, imgs):
|
12 |
features = []
|
13 |
for img in imgs:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
features.append(np.squeeze(feature['pixel_values']))
|
20 |
-
print('shape:::',features[0].shape)
|
21 |
return features
|
|
|
1 |
+
from transformers import ViTFeatureExtractor, ViTModel
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
+
import torch
|
5 |
|
6 |
class VitBase():
|
7 |
|
8 |
def __init__(self):
|
9 |
+
self.feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
10 |
+
self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
11 |
|
12 |
def extract_feature(self, imgs):
|
13 |
features = []
|
14 |
for img in imgs:
|
15 |
+
inputs = self.feature_extractor(images=img, return_tensors="pt")
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = self.model(**inputs)
|
18 |
+
last_hidden_states = outputs.last_hidden_state
|
19 |
+
features.append(np.squeeze(last_hidden_states.numpy()).flatten())
|
|
|
|
|
20 |
return features
|
src/similarity/similarity.py
CHANGED
@@ -9,7 +9,7 @@ class Similarity:
|
|
9 |
def get_models(self):
|
10 |
return [
|
11 |
model.SimilarityModel(name= 'Mobilenet V3', image_size= 224, model_cls = ModelnetV3()),
|
12 |
-
model.SimilarityModel(name= 'Vision Transformer', image_size= 224, model_cls = VitBase()),
|
13 |
]
|
14 |
|
15 |
def check_similarity(self, img_urls, model):
|
@@ -17,14 +17,18 @@ class Similarity:
|
|
17 |
imgs = []
|
18 |
for url in img_urls:
|
19 |
if url == "": continue
|
20 |
-
imgs.append(image_util.load_image_url(url, required_size=(model.image_size, model.image_size)))
|
21 |
|
22 |
features = model.model_cls.extract_feature(imgs)
|
|
|
23 |
for i, v in enumerate(features):
|
24 |
if i == 0: continue
|
25 |
dist = matrix.cosine(features[0], v)
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
return
|
29 |
|
30 |
|
|
|
9 |
def get_models(self):
|
10 |
return [
|
11 |
model.SimilarityModel(name= 'Mobilenet V3', image_size= 224, model_cls = ModelnetV3()),
|
12 |
+
model.SimilarityModel(name= 'Vision Transformer', image_size= 224, model_cls = VitBase(), image_input_type='pil'),
|
13 |
]
|
14 |
|
15 |
def check_similarity(self, img_urls, model):
|
|
|
17 |
imgs = []
|
18 |
for url in img_urls:
|
19 |
if url == "": continue
|
20 |
+
imgs.append(image_util.load_image_url(url, required_size=(model.image_size, model.image_size), image_type=model.image_input_type))
|
21 |
|
22 |
features = model.model_cls.extract_feature(imgs)
|
23 |
+
results = []
|
24 |
for i, v in enumerate(features):
|
25 |
if i == 0: continue
|
26 |
dist = matrix.cosine(features[0], v)
|
27 |
+
print(f'{i} -- distance: {dist}')
|
28 |
+
# results.append((imgs[i], f'similarity: {int(dist*100)}%'))
|
29 |
+
original_img = image_util.load_image_url(img_urls[i], required_size=None, image_type='pil')
|
30 |
+
results.append((original_img, f'similarity: {int(dist*100)}%'))
|
31 |
|
32 |
+
return results
|
33 |
|
34 |
|
src/util/image.py
CHANGED
@@ -2,9 +2,12 @@ from PIL import Image
|
|
2 |
import numpy as np
|
3 |
import requests
|
4 |
|
5 |
-
def load_image_url(url, required_size = (224,224)):
|
|
|
6 |
img = Image.open(requests.get(url, stream=True).raw)
|
7 |
img = Image.fromarray(np.array(img))
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
return img
|
|
|
2 |
import numpy as np
|
3 |
import requests
|
4 |
|
5 |
+
def load_image_url(url, required_size = (224,224), image_type = 'array'):
|
6 |
+
print(f'downloading.. {url}, type: {image_type}')
|
7 |
img = Image.open(requests.get(url, stream=True).raw)
|
8 |
img = Image.fromarray(np.array(img))
|
9 |
+
if required_size is not None:
|
10 |
+
img = img.resize(required_size)
|
11 |
+
if image_type == 'array':
|
12 |
+
img = (np.expand_dims(np.array(img), 0)/255).astype(np.float32)
|
13 |
return img
|