Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from pip._internal import main | |
# os.system('python model/segment_anything_2/setup.py build_ext --inplace') | |
# main(['install', 'timm==1.0.8']) | |
main(['install', 'setuptools==59.8.0']) | |
# main(['install', 'samv2']) | |
main(['install', 'bitsandbytes', '--upgrade']) | |
main(['install', 'timm==1.0.8']) | |
# main(['install', 'torch==2.1.2']) | |
# main(['install', 'numpy==1.21.6']) | |
import spaces | |
import timm | |
import shutil | |
print("installed", timm.__version__) | |
import gradio as gr | |
from inference import sam_preprocess, beit3_preprocess | |
from model.evf_sam2 import EvfSam2Model | |
from model.evf_sam2_video import EvfSam2Model as EvfSam2VideoModel | |
from transformers import AutoTokenizer | |
import torch | |
import cv2 | |
import numpy as np | |
import sys | |
import tqdm | |
version = "YxZhang/evf-sam2-multitask" | |
model_type = "sam2" | |
tokenizer = AutoTokenizer.from_pretrained( | |
version, | |
padding_side="right", | |
use_fast=False, | |
) | |
kwargs = { | |
"torch_dtype": torch.half, | |
} | |
image_model = EvfSam2Model.from_pretrained(version, | |
low_cpu_mem_usage=True, | |
**kwargs) | |
del image_model.visual_model.memory_encoder | |
del image_model.visual_model.memory_attention | |
image_model = image_model.eval() | |
image_model.to('cuda') | |
video_model = EvfSam2VideoModel.from_pretrained(version, | |
low_cpu_mem_usage=True, | |
**kwargs) | |
video_model = video_model.eval() | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
video_model.to('cuda') | |
def inference_image(image_np, prompt, semantic_type): | |
original_size_list = [image_np.shape[:2]] | |
image_beit = beit3_preprocess(image_np, 224).to(dtype=image_model.dtype, | |
device=image_model.device) | |
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type) | |
image_sam = image_sam.to(dtype=image_model.dtype, | |
device=image_model.device) | |
if semantic_type: | |
prompt = "[semantic] " + prompt | |
input_ids = tokenizer( | |
prompt, return_tensors="pt")["input_ids"].to(device=image_model.device) | |
# infer | |
pred_mask = image_model.inference( | |
image_sam.unsqueeze(0), | |
image_beit.unsqueeze(0), | |
input_ids, | |
resize_list=[resize_shape], | |
original_size_list=original_size_list, | |
) | |
pred_mask = pred_mask.detach().cpu().numpy()[0] | |
pred_mask = pred_mask > 0 | |
visualization = image_np.copy() | |
visualization[pred_mask] = (image_np * 0.5 + | |
pred_mask[:, :, None].astype(np.uint8) * | |
np.array([50, 120, 220]) * 0.5)[pred_mask] | |
return visualization / 255.0 | |
def inference_video(video_path, prompt, semantic_type): | |
os.system("rm -rf demo_temp") | |
os.makedirs("demo_temp/input_frames", exist_ok=True) | |
os.system( | |
"ffmpeg -i {} -q:v 2 -start_number 0 demo_temp/input_frames/'%05d.jpg'" | |
.format(video_path)) | |
input_frames = sorted(os.listdir("demo_temp/input_frames")) | |
image_np = cv2.imread("demo_temp/input_frames/00000.jpg") | |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) | |
height, width, channels = image_np.shape | |
image_beit = beit3_preprocess(image_np, 224).to(dtype=video_model.dtype, | |
device=video_model.device) | |
if semantic_type: | |
prompt = "[semantic] " + prompt | |
input_ids = tokenizer( | |
prompt, return_tensors="pt")["input_ids"].to(device=video_model.device) | |
# infer | |
output = video_model.inference( | |
"demo_temp/input_frames", | |
image_beit.unsqueeze(0), | |
input_ids, | |
) | |
# save visualization | |
video_writer = cv2.VideoWriter("demo_temp/out.mp4", fourcc, 30, | |
(width, height)) | |
# pbar = tqdm(input_frames) | |
# pbar.set_description("generating video: ") | |
for i, file in enumerate(input_frames): | |
img = cv2.imread(os.path.join("demo_temp/input_frames", file)) | |
vis = img + np.array([0, 0, 128]) * output[i][1].transpose(1, 2, 0) | |
vis = np.clip(vis, 0, 255) | |
vis = np.uint8(vis) | |
video_writer.write(vis) | |
shutil.rmtree("demo_temp/input_frames") | |
video_writer.release() | |
return "demo_temp/out.mp4" | |
desc = """ | |
<div><h2>EVF-SAM-2</h2> | |
<div><h4>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h4> | |
<p>EVF-SAM extends <b>SAM-2</>'s capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div> | |
<div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div> | |
""" | |
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>' | |
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)' | |
with gr.Blocks() as demo: | |
gr.Markdown(desc) | |
with gr.Tab(label="EVF-SAM-2-Image"): | |
with gr.Row(): | |
input_image = gr.Image(type='numpy', | |
label='Input Image', | |
image_mode='RGB') | |
output_image = gr.Image(type='numpy', label='Output Image') | |
with gr.Row(): | |
image_prompt = gr.Textbox( | |
label="Prompt", | |
info= | |
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English" | |
) | |
submit_image = gr.Button(value='Submit', | |
scale=1, | |
variant='primary') | |
with gr.Row(): | |
semantic_type_img = gr.Checkbox( | |
False, | |
label="semantic level", | |
info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)" | |
) | |
submit_image.click(fn=inference_image, | |
inputs=[input_image, image_prompt, semantic_type_img], | |
outputs=output_image) | |
gr.Examples( | |
[ | |
["assets/zebra.jpg", "zebra bottum left", False], | |
["assets/bus.jpg", "bus", True], | |
["assets/seaside_sdxl.png", "sky", True], | |
["assets/man_sdxl.png", "face", True] | |
], | |
inputs=[input_image, image_prompt, semantic_type_img], | |
outputs=output_image | |
) | |
with gr.Tab(label="EVF-SAM-2-Video"): | |
with gr.Row(): | |
input_video = gr.Video(label='Input Video') | |
output_video = gr.Video(label='Output Video') | |
with gr.Row(): | |
video_prompt = gr.Textbox( | |
label="Prompt", | |
info= | |
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English" | |
) | |
submit_video = gr.Button(value='Submit', | |
scale=1, | |
variant='primary') | |
with gr.Row(): | |
semantic_type_vid = gr.Checkbox( | |
False, | |
label="semantic level", | |
info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)" | |
) | |
submit_video.click(fn=inference_video, | |
inputs=[input_video, video_prompt, semantic_type_vid], | |
outputs=output_video) | |
gr.Examples( | |
[ | |
["assets/elephant.mp4", "sky", True], | |
["assets/dog.mp4", "dog", False], | |
["assets/cat.mp4", "cat", False] | |
], | |
inputs=[input_video, video_prompt, semantic_type_vid], | |
outputs=output_video | |
) | |
demo.launch(show_error=True) | |