Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from pycocotools import mask | |
from model.segment_anything.utils.transforms import ResizeLongestSide | |
from .grefer import G_REFER | |
from .refer import REFER | |
from torchvision import transforms | |
class ReferSegDataset(torch.utils.data.Dataset): | |
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
img_size = 1024 | |
ignore_label = 255 | |
def __init__( | |
self, | |
base_image_dir, | |
tokenizer, | |
samples_per_epoch=500 * 8 * 2 * 10, | |
precision: str = "fp32", | |
image_size: int = 224, | |
num_classes_per_sample: int = 3, | |
exclude_val=False, | |
refer_seg_data="refclef||refcoco||refcoco+||refcocog", | |
model_type="ori", | |
transform=ResizeLongestSide(1024), | |
): | |
self.model_type = model_type | |
self.exclude_val = exclude_val | |
self.samples_per_epoch = samples_per_epoch | |
self.num_classes_per_sample = num_classes_per_sample | |
self.base_image_dir = base_image_dir | |
self.tokenizer = tokenizer | |
self.precision = precision | |
self.transform = transform | |
self.image_preprocessor = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((image_size, image_size), interpolation=3), | |
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) | |
]) | |
DATA_DIR = os.path.join(base_image_dir, "refer_seg") | |
self.refer_seg_ds_list = refer_seg_data.split( | |
"||" | |
) # ['refclef', 'refcoco', 'refcoco+', 'refcocog'] | |
self.refer_seg_data = {} | |
for ds in self.refer_seg_ds_list: | |
if ds == "refcocog": | |
splitBy = "umd" | |
else: | |
splitBy = "unc" | |
if ds == "grefcoco": | |
refer_api = G_REFER(DATA_DIR, ds, splitBy) | |
else: | |
refer_api = REFER(DATA_DIR, ds, splitBy) | |
ref_ids_train = refer_api.getRefIds(split="train") | |
images_ids_train = refer_api.getImgIds(ref_ids=ref_ids_train) | |
refs_train = refer_api.loadRefs(ref_ids=ref_ids_train) | |
refer_seg_ds = {} | |
refer_seg_ds["images"] = [] | |
loaded_images = refer_api.loadImgs(image_ids=images_ids_train) | |
for item in loaded_images: | |
item = item.copy() | |
if ds == "refclef": | |
item["file_name"] = os.path.join( | |
DATA_DIR, "images/saiapr_tc-12", item["file_name"] | |
) | |
else: | |
item["file_name"] = os.path.join( | |
DATA_DIR, "images/mscoco/images/train2014", item["file_name"] | |
) | |
refer_seg_ds["images"].append(item) | |
refer_seg_ds["annotations"] = refer_api.Anns # anns_train | |
print( | |
"dataset {} (refs {}) (train split) has {} images and {} annotations.".format( | |
ds, | |
splitBy, | |
len(refer_seg_ds["images"]), | |
len(refer_seg_ds["annotations"]), | |
) | |
) | |
img2refs = {} | |
for ref in refs_train: | |
image_id = ref["image_id"] | |
img2refs[image_id] = img2refs.get(image_id, []) + [ | |
ref, | |
] | |
refer_seg_ds["img2refs"] = img2refs | |
self.refer_seg_data[ds] = refer_seg_ds | |
def __len__(self): | |
return self.samples_per_epoch | |
def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
if self.model_type=="hq": | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh), value=128) | |
# Normalize colors | |
x = (x - self.pixel_mean) / self.pixel_std | |
if self.model_type=="effi": | |
x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0) | |
else: | |
# Pad | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
def __getitem__(self, idx): | |
ds = random.randint(0, len(self.refer_seg_ds_list) - 1) | |
ds = self.refer_seg_ds_list[ds] | |
refer_seg_ds = self.refer_seg_data[ds] | |
images = refer_seg_ds["images"] | |
annotations = refer_seg_ds["annotations"] | |
img2refs = refer_seg_ds["img2refs"] | |
idx = random.randint(0, len(images) - 1) | |
image_info = images[idx] | |
image_path = image_info["file_name"] | |
image_id = image_info["id"] | |
refs = img2refs[image_id] | |
if len(refs) == 0: | |
return self.__getitem__(0) | |
sents = [] | |
ann_ids = [] | |
for ref in refs: | |
for sent in ref["sentences"]: | |
text = sent["sent"] | |
sents.append(text) | |
ann_ids.append(ref["ann_id"]) | |
if len(sents) >= self.num_classes_per_sample: | |
sampled_inds = np.random.choice( | |
list(range(len(sents))), size=self.num_classes_per_sample, replace=False | |
) | |
else: | |
sampled_inds = list(range(len(sents))) | |
sampled_sents = np.vectorize(sents.__getitem__)(sampled_inds).tolist() | |
# sampled_ann_ids = np.vectorize(ann_ids.__getitem__)(sampled_inds).tolist() | |
sampled_ann_ids = [ann_ids[ind] for ind in sampled_inds] | |
sampled_classes = sampled_sents | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# preprocess image for evf | |
image_evf = self.image_preprocessor(image) | |
image = self.transform.apply_image(image) # preprocess image for sam | |
resize = image.shape[:2] | |
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) | |
flag = False | |
masks = [] | |
for ann_id in sampled_ann_ids: | |
if isinstance(ann_id, list): | |
flag = True | |
if -1 in ann_id: | |
assert len(ann_id) == 1 | |
m = np.zeros((image_info["height"], image_info["width"])).astype( | |
np.uint8 | |
) | |
else: | |
m_final = np.zeros( | |
(image_info["height"], image_info["width"]) | |
).astype(np.uint8) | |
for ann_id_i in ann_id: | |
ann = annotations[ann_id_i] | |
if len(ann["segmentation"]) == 0: | |
m = np.zeros( | |
(image_info["height"], image_info["width"]) | |
).astype(np.uint8) | |
else: | |
if type(ann["segmentation"][0]) == list: # polygon | |
rle = mask.frPyObjects( | |
ann["segmentation"], | |
image_info["height"], | |
image_info["width"], | |
) | |
else: | |
rle = ann["segmentation"] | |
for i in range(len(rle)): | |
if not isinstance(rle[i]["counts"], bytes): | |
rle[i]["counts"] = rle[i]["counts"].encode() | |
m = mask.decode(rle) | |
m = np.sum( | |
m, axis=2 | |
) # sometimes there are multiple binary map (corresponding to multiple segs) | |
m = m.astype(np.uint8) # convert to np.uint8 | |
m_final = m_final | m | |
m = m_final | |
masks.append(m) | |
continue | |
ann = annotations[ann_id] | |
if len(ann["segmentation"]) == 0: | |
m = np.zeros((image_info["height"], image_info["width"])).astype( | |
np.uint8 | |
) | |
masks.append(m) | |
continue | |
if type(ann["segmentation"][0]) == list: # polygon | |
rle = mask.frPyObjects( | |
ann["segmentation"], image_info["height"], image_info["width"] | |
) | |
else: | |
rle = ann["segmentation"] | |
for i in range(len(rle)): | |
if not isinstance(rle[i]["counts"], bytes): | |
rle[i]["counts"] = rle[i]["counts"].encode() | |
m = mask.decode(rle) | |
m = np.sum( | |
m, axis=2 | |
) # sometimes there are multiple binary map (corresponding to multiple segs) | |
m = m.astype(np.uint8) # convert to np.uint8 | |
masks.append(m) | |
masks = np.stack(masks, axis=0) | |
masks = torch.from_numpy(masks) | |
label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label | |
return ( | |
image_path, | |
image, | |
image_evf, | |
masks, | |
label, | |
resize, | |
sampled_classes, | |
) | |