evf-sam / model /evf_effisam.py
wondervictor's picture
add app
a93afca
raw
history blame
11.2 kB
from typing import List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM
from .EfficientSAM.efficient_sam.build_efficient_sam import build_efficient_sam_vits, build_efficient_sam_vitt
from .unilm.beit3.modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config
from .configuration_evf import EvfConfig
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
scale=1000, # 100000.0,
eps=1e-6,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1, 2)
targets = targets.flatten(1, 2)
numerator = 2 * (inputs / scale * targets).sum(-1)
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
loss = 1 - (numerator + eps) / (denominator + eps)
loss = loss.sum() / (num_masks + 1e-8)
return loss
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
return loss
class EvfEffiSamModel(PreTrainedModel):
config_class = EvfConfig
def __init__(
self,
config,
**kwargs
):
super(EvfEffiSamModel, self).__init__(config)
self.config = config
self.vision_pretrained = kwargs.get("vision_pretrained", None)
self.encoder_pretrained = kwargs.get("encoder_pretrained", None)
self.dice_loss_weight = kwargs.get("dice_loss_weight", None)
self.bce_loss_weight = kwargs.get("bce_loss_weight", None)
self.train_mask_decoder = kwargs.get("train_mask_decoder", False)
self.initialize_evf_modules(config)
def initialize_evf_modules(self, config):
# EffiSAM
if config.sam_scale=="tiny":
self.visual_model = build_efficient_sam_vitt(self.vision_pretrained)
elif config.sam_scale=="small":
# vits scale, or without pretrained weight (self.vision_pretrained=None)
self.visual_model = build_efficient_sam_vits(self.vision_pretrained)
else:
raise NotImplementedError
for param in self.visual_model.parameters():
param.requires_grad = False
if self.train_mask_decoder:
self.visual_model.mask_decoder.train()
for param in self.visual_model.mask_decoder.parameters():
param.requires_grad = True
# beit-3
if self.config.mm_extractor_scale == "base":
beit_config = _get_base_config()
elif self.config.mm_extractor_scale == "large":
beit_config = _get_large_config()
else:
raise AttributeError(f"model config should contain key 'mm_extractor_scale', with value 'base' or 'large'.")
self.mm_extractor = BEiT3Wrapper(beit_config)
if self.encoder_pretrained is not None:
beit_state_dict = torch.load(self.encoder_pretrained)["model"]
self.mm_extractor.load_state_dict(
beit_state_dict,
strict=False
)
for param in self.mm_extractor.parameters():
param.requires_grad = True
# Projection layer
in_dim = config.hidden_size
assert in_dim==beit_config.encoder_embed_dim, \
f"projection layer dim {in_dim} mismatch with mm_extractor dim {beit_config.encoder_embed_dim}"
out_dim = config.out_dim
text_fc = [
nn.Linear(in_dim, in_dim),
nn.ReLU(),
nn.Linear(in_dim, out_dim)
]
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])
self.text_hidden_fcs.train()
for param in self.text_hidden_fcs.parameters():
param.requires_grad = True
def get_visual_embs(self, pixel_values: torch.Tensor):
with torch.no_grad():
image_embeddings_list = []
for i in range(pixel_values.shape[0]):
torch.cuda.empty_cache()
image_embeddings = self.visual_model.image_encoder(
pixel_values[i].unsqueeze(0)
)
image_embeddings_list.append(image_embeddings)
torch.cuda.empty_cache()
image_embeddings = torch.cat(image_embeddings_list, 0)
return image_embeddings
def forward(
self,
images: torch.Tensor,
images_evf: torch.Tensor,
input_ids: torch.Tensor,
attention_masks: torch.Tensor,
offset: torch.Tensor,
masks_list: List[torch.Tensor],
label_list: List[torch.Tensor],
resize_list: List[tuple],
inference: bool = False,
**kwargs,
):
image_embeddings = self.get_visual_embs(images)
batch_size = image_embeddings.shape[0]
assert batch_size == len(offset) - 1
images_evf_list = []
for i in range(len(offset) - 1):
start_i, end_i = offset[i], offset[i + 1]
images_evf_i = (
images_evf[i]
.unsqueeze(0)
.expand(end_i - start_i, -1, -1, -1)
.contiguous()
)
images_evf_list.append(images_evf_i)
images_evf = torch.cat(images_evf_list, dim=0)
multimask_output = False
output = self.mm_extractor.beit3(
visual_tokens=images_evf,
textual_tokens=input_ids,
text_padding_position=~attention_masks
)
feat = output["encoder_out"][:, :1, ...]
feat = self.text_hidden_fcs[0](feat)
feat = torch.split(feat, [offset[i+1] - offset[i] for i in range(len(offset)-1)])
pred_masks = []
for i in range(len(feat)):
sparse_embeddings = feat[i].unsqueeze(0)
sparse_embeddings = sparse_embeddings.to(feat[i].dtype)
low_res_masks, iou_predictions = self.visual_model.mask_decoder(
image_embeddings=image_embeddings[i].unsqueeze(0),
image_pe=self.visual_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
multimask_output=multimask_output,
)
if multimask_output:
sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True)
low_res_masks = torch.take_along_dim(low_res_masks, sorted_ids[..., None, None], dim=1)
pred_mask = self.postprocess_masks(
low_res_masks[:, :1],
input_size=resize_list[i],
original_size=label_list[i].shape,
)
pred_masks.append(pred_mask[:, 0])
gt_masks = masks_list
if inference:
return {
"pred_masks": pred_masks,
"gt_masks": gt_masks,
}
mask_bce_loss = 0
mask_dice_loss = 0
num_masks = 0
for batch_idx in range(len(pred_masks)):
gt_mask = gt_masks[batch_idx]
pred_mask = pred_masks[batch_idx]
assert (
gt_mask.shape[0] == pred_mask.shape[0]
), "gt_mask.shape: {}, pred_mask.shape: {}".format(
gt_mask.shape, pred_mask.shape
)
mask_bce_loss += (
sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
* gt_mask.shape[0]
)
mask_dice_loss += (
dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
* gt_mask.shape[0]
)
num_masks += gt_mask.shape[0]
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
mask_loss = mask_bce_loss + mask_dice_loss
loss = mask_loss
return {
"loss": loss,
"mask_bce_loss": mask_bce_loss,
"mask_dice_loss": mask_dice_loss,
"mask_loss": mask_loss,
}
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
pre-process of Effi-SAM is different from SAM, where there is no padding,
so cropping is not needed in post-process.
"""
dtype = masks.dtype
# masks = F.interpolate(
# masks.float(),
# (1024, 1024),
# mode="bilinear",
# align_corners=False,
# )
# masks = masks.to(dtype)
# masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(
masks, original_size, mode="bilinear", align_corners=False
)
masks = masks.to(dtype)
return masks
def inference(
self,
images,
images_evf,
input_ids,
resize_list,
original_size_list,
multimask_output=False,
):
with torch.no_grad():
image_embeddings = self.visual_model.image_encoder(images)
output = self.mm_extractor.beit3(visual_tokens=images_evf, textual_tokens=input_ids, text_padding_position=torch.zeros_like(input_ids))
feat = output["encoder_out"][:, :1, ...]
feat = self.text_hidden_fcs[0](feat)
sparse_embeddings = feat.unsqueeze(0)
sparse_embeddings = sparse_embeddings.to(feat.dtype)
low_res_masks, iou_predictions = self.visual_model.mask_decoder(
image_embeddings=image_embeddings,
image_pe=self.visual_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
multimask_output=multimask_output,
)
if multimask_output:
sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True)
low_res_masks = torch.take_along_dim(low_res_masks, sorted_ids[..., None, None], dim=1)
pred_mask = self.postprocess_masks(
low_res_masks[:, :1],
input_size=resize_list[0],
original_size=original_size_list[0],
)
return pred_mask[:, 0]
AutoConfig.register("evf", EvfConfig)
AutoModelForCausalLM.register(EvfConfig, EvfEffiSamModel)