ControlAR / tokenizer /vae /sd_vae_demo.py
wondervictor
update README
2422035
import argparse
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
from diffusers.models import AutoencoderKL
def main(args):
# Setup PyTorch:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
# create and load model
vae = AutoencoderKL.from_pretrained(f"stabilityai/{args.vae}").to(device)
# load image
img_path = args.image_path
out_path = args.image_path.replace('.jpg', '_vae.jpg').replace('.jpeg', '_vae.jpeg').replace('.png', '_vae.png')
input_size = args.image_size
img = Image.open(img_path).convert("RGB")
# preprocess
size_org = img.size
img = img.resize((input_size, input_size))
img = np.array(img) / 255.
x = 2.0 * img - 1.0 # x value is between [-1, 1]
x = torch.tensor(x)
x = x.unsqueeze(dim=0)
x = torch.einsum('nhwc->nchw', x)
x_input = x.float().to("cuda")
# inference
with torch.no_grad():
# Map input images to latent space + normalize latents:
latent = vae.encode(x_input).latent_dist.sample().mul_(0.18215)
# reconstruct:
output = vae.decode(latent / 0.18215).sample # output value is between [-1, 1]
# postprocess
output = F.interpolate(output, size=[size_org[1], size_org[0]], mode='bilinear').permute(0, 2, 3, 1)[0]
sample = torch.clamp(127.5 * output + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
# save
Image.fromarray(sample).save(out_path)
print("Reconstructed image is saved to {}".format(out_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image-path", type=str, default="assets/example.jpg")
parser.add_argument("--vae", type=str, choices=["sdxl-vae", "sd-vae-ft-mse"], default="sd-vae-ft-mse")
parser.add_argument("--image-size", type=int, choices=[256, 512, 1024], default=512)
parser.add_argument("--seed", type=int, default=0)
args = parser.parse_args()
main(args)