Spaces:
Running
on
Zero
Running
on
Zero
from controlnet_aux import LineartDetector | |
import torch | |
import cv2 | |
import numpy as np | |
import torch.nn as nn | |
norm_layer = nn.InstanceNorm2d | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features) | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class LineArt(nn.Module): | |
def __init__(self, input_nc=3, output_nc=1, n_residual_blocks=3, sigmoid=True): | |
super(LineArt, self).__init__() | |
# Initial convolution block | |
model0 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, 7), | |
norm_layer(64), | |
nn.ReLU(inplace=True) ] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features*2 | |
for _ in range(2): | |
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features*2 | |
self.model1 = nn.Sequential(*model1) | |
model2 = [] | |
# Residual blocks | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features//2 | |
for _ in range(2): | |
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features//2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, 7)] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x, cond=None): | |
""" | |
input: tensor (B,C,H,W) | |
output: tensor (B,1,H,W) 0~1 | |
""" | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |
if __name__ == '__main__': | |
import matplotlib.pyplot as plt | |
from tqdm import tqdm | |
apply_lineart = LineArt() | |
apply_lineart.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu'))) | |
img = cv2.imread('condition/car_448_768.jpg') | |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0).repeat(8,1,1,1).float() | |
detected_map = apply_lineart(img) | |
print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min()) | |
cv2.imwrite('condition/example_lineart.jpg', 255*detected_map[0,0].cpu().detach().numpy()) |