ControlAR / tokenizer /tokenizer_image /reconstruction_vq_ddp.py
wondervictor
update README
2422035
raw
history blame
8.67 kB
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import argparse
import itertools
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss
from dataset.augmentation import center_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.vq_model import VQ_models
def create_npz_from_sample_folder(sample_dir, num=50000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def main(args):
# Setup PyTorch:
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
if "ema" in checkpoint: # ema
model_weight = checkpoint["ema"]
elif "model" in checkpoint: # ddp
model_weight = checkpoint["model"]
elif "state_dict" in checkpoint:
model_weight = checkpoint["state_dict"]
else:
raise Exception("please check model weight")
vq_model.load_state_dict(model_weight)
del checkpoint
# Create folder to save samples:
folder_name = (f"{args.vq_model}-{args.dataset}-size-{args.image_size}-size-{args.image_size_eval}"
f"-codebook-size-{args.codebook_size}-dim-{args.codebook_embed_dim}-seed-{args.global_seed}")
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}")
dist.barrier()
# Setup data:
transform = transforms.Compose([
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
if args.dataset == 'imagenet':
dataset = build_dataset(args, transform=transform)
num_fid_samples = 50000
elif args.dataset == 'coco':
dataset = build_dataset(args, transform=transform)
num_fid_samples = 5000
elif args.dataset == 'imagenet_code':
dataset = build_dataset(args)
num_fid_samples = 50000
else:
raise Exception("please check dataset")
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=False,
seed=args.global_seed
)
loader = DataLoader(
dataset,
batch_size=args.per_proc_batch_size,
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
psnr_val_rgb = []
ssim_val_rgb = []
loader = tqdm(loader) if rank == 0 else loader
total = 0
# for x, _ in loader:
for batch in loader:
x = batch['condition_imgs'].repeat(1,3,1,1)
# import pdb
# pdb.set_trace()
if args.image_size_eval != args.image_size:
rgb_gts = F.interpolate(x, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
else:
rgb_gts = x
rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
x = x.to(device, non_blocking=True)
with torch.no_grad():
latent, _, [_, _, indices] = vq_model.encode(x.float())
import pdb;pdb.set_trace()
samples = vq_model.decode_code(indices, latent.shape) # output value is between [-1, 1]
if args.image_size_eval != args.image_size:
samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
index = i * dist.get_world_size() + rank + total
# Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
# metric
rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
psnr = psnr_loss(rgb_restored, rgb_gt)
ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
psnr_val_rgb.append(psnr)
ssim_val_rgb.append(ssim)
total += global_batch_size
# ------------------------------------
# Summary
# ------------------------------------
# Make sure all processes have finished saving their samples
dist.barrier()
world_size = dist.get_world_size()
gather_psnr_val = [None for _ in range(world_size)]
gather_ssim_val = [None for _ in range(world_size)]
dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
dist.all_gather_object(gather_ssim_val, ssim_val_rgb)
if rank == 0:
gather_psnr_val = list(itertools.chain(*gather_psnr_val))
gather_ssim_val = list(itertools.chain(*gather_ssim_val))
psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
result_file = f"{sample_folder_dir}_results.txt"
print("writing results to {}".format(result_file))
with open(result_file, 'w') as f:
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
print("Done.")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default=None)
parser.add_argument("--code-path", type=str, required=True)
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco', 'imagenet_code'], default='imagenet')
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=256)
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
parser.add_argument("--sample-dir", type=str, default="reconstructions")
parser.add_argument("--per-proc-batch-size", type=int, default=32)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=4)
parser.add_argument("--condition", type=str, choices=['canny', 'hed'], default='canny')
parser.add_argument("--get-condition-img", type=bool, default=False)
args = parser.parse_args()
main(args)