Spaces:
Running
on
Zero
Running
on
Zero
from controlnet_aux import LineartDetector | |
import torch | |
import cv2 | |
import numpy as np | |
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
class Depth: | |
def __init__(self, device): | |
self.model = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large") | |
def __call__(self, input_image): | |
""" | |
input: tensor() | |
""" | |
control_image = self.model(input_image) | |
return np.array(control_image) | |
if __name__ == '__main__': | |
import matplotlib.pyplot as plt | |
from tqdm import tqdm | |
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
from PIL import Image | |
image = Image.open('condition/example/t2i/depth/depth.png') | |
img = cv2.imread('condition/example/t2i/depth/depth.png') | |
processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large") | |
model = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large") | |
inputs = torch.from_numpy(np.array(img)).permute(2,0,1).unsqueeze(0).float()# | |
inputs = 2*(inputs/255 - 0.5) | |
inputs = processor(images=image, return_tensors="pt", size=(512,512)) | |
print(inputs) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_depth = outputs.predicted_depth | |
print(predicted_depth.shape) | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
output = prediction.squeeze().cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype("uint8") | |
depth = Image.fromarray(formatted) | |
depth.save('condition/example/t2i/depth/example_depth.jpg') |