AlexNijjar
commited on
Commit
•
90e1a0e
1
Parent(s):
54c591b
Use gradio's built-in refresh
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import time
|
4 |
from dataclasses import dataclass
|
5 |
-
from datetime import datetime
|
6 |
from zoneinfo import ZoneInfo
|
7 |
|
8 |
import bittensor as bt
|
@@ -31,6 +30,7 @@ bt.logging.disable_logging()
|
|
31 |
|
32 |
runs: dict[int, list[Run]] = {}
|
33 |
validator_identities: dict[int, str] = {}
|
|
|
34 |
|
35 |
|
36 |
@dataclass
|
@@ -82,11 +82,15 @@ def calculate_score(baseline_generation_time: float, generation_time: float, sim
|
|
82 |
return (baseline_generation_time - generation_time) * similarity_score
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
85 |
def get_graph_entries(runs: list[Run]) -> dict[int, GraphEntry]:
|
86 |
entries: dict[int, GraphEntry] = {}
|
87 |
|
88 |
for run in reversed(runs[:GRAPH_HISTORY_DAYS]):
|
89 |
-
date =
|
90 |
|
91 |
for summary_key, summary_value in run.summary.items():
|
92 |
if not summary_key.startswith("benchmarks"):
|
@@ -165,53 +169,6 @@ def create_graph(runs: list[Run]) -> go.Figure:
|
|
165 |
return fig
|
166 |
|
167 |
|
168 |
-
def create_leaderboard(runs: list[Run]) -> list[tuple]:
|
169 |
-
entries: dict[int, LeaderboardEntry] = {}
|
170 |
-
|
171 |
-
for run in runs:
|
172 |
-
has_data = False
|
173 |
-
for summary_key, summary_value in run.summary.items():
|
174 |
-
if not summary_key == "benchmarks":
|
175 |
-
continue
|
176 |
-
for key, value in summary_value.items():
|
177 |
-
has_data = True
|
178 |
-
|
179 |
-
uid = int(key)
|
180 |
-
generation_time = value["generation_time"]
|
181 |
-
baseline_generation_time = value["baseline_generation_time"]
|
182 |
-
similarity = min(1, value["similarity"])
|
183 |
-
|
184 |
-
entries[uid] = LeaderboardEntry(
|
185 |
-
uid=uid,
|
186 |
-
winner="winner" in value,
|
187 |
-
repository=run.summary["submissions"][str(uid)]["repository"],
|
188 |
-
score=calculate_score(baseline_generation_time, generation_time, similarity),
|
189 |
-
similarity=similarity,
|
190 |
-
baseline_generation_time=baseline_generation_time,
|
191 |
-
generation_time=generation_time,
|
192 |
-
size=value["size"],
|
193 |
-
vram_used=value["vram_used"],
|
194 |
-
watts_used=value["watts_used"],
|
195 |
-
hotkey=value["hotkey"],
|
196 |
-
)
|
197 |
-
|
198 |
-
if has_data:
|
199 |
-
break
|
200 |
-
|
201 |
-
return [(
|
202 |
-
entry.uid,
|
203 |
-
f"<span style='color: {'springgreen' if entry.winner else 'red'}'>{entry.winner}</span>",
|
204 |
-
entry.repository,
|
205 |
-
round(entry.score, 3),
|
206 |
-
f"{entry.generation_time:.3f}s",
|
207 |
-
f"{entry.similarity:.3f}",
|
208 |
-
f"{entry.size / 1_000_000_000:.3f}GB",
|
209 |
-
f"{entry.vram_used / 1_000_000_000:.3f}GB",
|
210 |
-
f"{entry.watts_used:.3f}W",
|
211 |
-
entry.hotkey,
|
212 |
-
) for entry in sorted(entries.values(), key=lambda entry: (entry.winner, entry.score), reverse=True)]
|
213 |
-
|
214 |
-
|
215 |
def get_run_validator_uid(run: Run) -> int:
|
216 |
json_config = json.loads(run.json_config)
|
217 |
uid = int(json_config["uid"]["value"])
|
@@ -260,8 +217,17 @@ def get_validator_name(validator_uid: int) -> str:
|
|
260 |
|
261 |
|
262 |
def get_choices() -> list[tuple[str, int]]:
|
|
|
|
|
|
|
|
|
|
|
263 |
choices: list[tuple[str, int]] = []
|
264 |
for uid, run in runs.items():
|
|
|
|
|
|
|
|
|
265 |
benchmarks = dict(run[0].summary.get("benchmarks", {}))
|
266 |
finished = any("winner" in value for value in benchmarks.values())
|
267 |
progress_text = "Finished" if finished else "In Progress"
|
@@ -273,9 +239,81 @@ def refresh():
|
|
273 |
metagraph.sync(subtensor=subtensor)
|
274 |
fetch_wandb_data()
|
275 |
fetch_identities()
|
276 |
-
|
|
|
|
|
|
|
277 |
now = datetime.now(tz=ZoneInfo("America/New_York"))
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
with demo:
|
280 |
gr.Image(
|
281 |
"cover.png",
|
@@ -291,12 +329,12 @@ def refresh():
|
|
291 |
"""
|
292 |
<center>
|
293 |
<h1 style="font-size: 50px"> SN39 EdgeMaxxing Leaderboard </h1>
|
294 |
-
|
295 |
This leaderboard for SN39 tracks the results and top model submissions from current and previous contests.
|
296 |
</center>
|
297 |
""")
|
298 |
|
299 |
-
with gr.Accordion(f"Contest #1 Submission Leader: New Dream SDXL on NVIDIA RTX 4090s
|
300 |
dropdown = gr.Dropdown(
|
301 |
get_choices(),
|
302 |
value=SOURCE_VALIDATOR_UID,
|
@@ -304,28 +342,18 @@ def refresh():
|
|
304 |
label="Source Validator"
|
305 |
)
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
datatype=["number", "markdown", "markdown", "number", "markdown", "number", "markdown", "markdown", "markdown", "markdown"],
|
311 |
-
elem_id="leaderboard-table",
|
312 |
-
)
|
313 |
|
314 |
graph = gr.Plot()
|
315 |
-
|
316 |
-
|
317 |
dropdown.change(lambda uid: create_graph(runs[uid]), [dropdown], [graph])
|
318 |
-
dropdown.change(lambda uid: create_leaderboard(runs[uid]), [dropdown], [leaderboard])
|
319 |
|
|
|
320 |
|
321 |
-
|
322 |
-
refresh()
|
323 |
-
demo.launch(prevent_thread_lock=True)
|
324 |
|
325 |
-
while True:
|
326 |
-
time.sleep(REFRESH_RATE)
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
refresh()
|
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
from dataclasses import dataclass
|
4 |
+
from datetime import datetime, timedelta
|
5 |
from zoneinfo import ZoneInfo
|
6 |
|
7 |
import bittensor as bt
|
|
|
30 |
|
31 |
runs: dict[int, list[Run]] = {}
|
32 |
validator_identities: dict[int, str] = {}
|
33 |
+
last_refresh: datetime = datetime.now(tz=ZoneInfo("America/New_York"))
|
34 |
|
35 |
|
36 |
@dataclass
|
|
|
82 |
return (baseline_generation_time - generation_time) * similarity_score
|
83 |
|
84 |
|
85 |
+
def date_from_run(run: Run) -> datetime:
|
86 |
+
return datetime.strptime(run.created_at, "%Y-%m-%dT%H:%M:%SZ").astimezone(ZoneInfo("America/New_York"))
|
87 |
+
|
88 |
+
|
89 |
def get_graph_entries(runs: list[Run]) -> dict[int, GraphEntry]:
|
90 |
entries: dict[int, GraphEntry] = {}
|
91 |
|
92 |
for run in reversed(runs[:GRAPH_HISTORY_DAYS]):
|
93 |
+
date = date_from_run(run)
|
94 |
|
95 |
for summary_key, summary_value in run.summary.items():
|
96 |
if not summary_key.startswith("benchmarks"):
|
|
|
169 |
return fig
|
170 |
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
def get_run_validator_uid(run: Run) -> int:
|
173 |
json_config = json.loads(run.json_config)
|
174 |
uid = int(json_config["uid"]["value"])
|
|
|
217 |
|
218 |
|
219 |
def get_choices() -> list[tuple[str, int]]:
|
220 |
+
now = datetime.now(tz=ZoneInfo("America/New_York"))
|
221 |
+
noon = now.replace(hour=12, minute=0, second=0, microsecond=0)
|
222 |
+
if now.hour < 12:
|
223 |
+
noon -= timedelta(days=1)
|
224 |
+
|
225 |
choices: list[tuple[str, int]] = []
|
226 |
for uid, run in runs.items():
|
227 |
+
date = date_from_run(run[0])
|
228 |
+
if date < noon:
|
229 |
+
continue
|
230 |
+
|
231 |
benchmarks = dict(run[0].summary.get("benchmarks", {}))
|
232 |
finished = any("winner" in value for value in benchmarks.values())
|
233 |
progress_text = "Finished" if finished else "In Progress"
|
|
|
239 |
metagraph.sync(subtensor=subtensor)
|
240 |
fetch_wandb_data()
|
241 |
fetch_identities()
|
242 |
+
|
243 |
+
|
244 |
+
def get_data(validator_uid: int) -> gr.Dataframe:
|
245 |
+
global last_refresh
|
246 |
now = datetime.now(tz=ZoneInfo("America/New_York"))
|
247 |
|
248 |
+
if (now - last_refresh).total_seconds() > REFRESH_RATE:
|
249 |
+
refresh()
|
250 |
+
last_refresh = now
|
251 |
+
print(f"Refreshing Leaderboard at {now.strftime('%Y-%m-%d %H:%M:%S')}")
|
252 |
+
|
253 |
+
entries: dict[int, LeaderboardEntry] = {}
|
254 |
+
|
255 |
+
for run in runs[validator_uid]:
|
256 |
+
has_data = False
|
257 |
+
for summary_key, summary_value in run.summary.items():
|
258 |
+
if not summary_key == "benchmarks":
|
259 |
+
continue
|
260 |
+
for key, value in summary_value.items():
|
261 |
+
has_data = True
|
262 |
+
|
263 |
+
uid = int(key)
|
264 |
+
generation_time = value["generation_time"]
|
265 |
+
baseline_generation_time = value["baseline_generation_time"]
|
266 |
+
similarity = min(1, value["similarity"])
|
267 |
+
|
268 |
+
entries[uid] = LeaderboardEntry(
|
269 |
+
uid=uid,
|
270 |
+
winner="winner" in value,
|
271 |
+
repository=run.summary["submissions"][str(uid)]["repository"],
|
272 |
+
score=calculate_score(baseline_generation_time, generation_time, similarity),
|
273 |
+
similarity=similarity,
|
274 |
+
baseline_generation_time=baseline_generation_time,
|
275 |
+
generation_time=generation_time,
|
276 |
+
size=value["size"],
|
277 |
+
vram_used=value["vram_used"],
|
278 |
+
watts_used=value["watts_used"],
|
279 |
+
hotkey=value["hotkey"],
|
280 |
+
)
|
281 |
+
|
282 |
+
if has_data:
|
283 |
+
break
|
284 |
+
|
285 |
+
sorted_entries = [(
|
286 |
+
entry.uid,
|
287 |
+
f"<span style='color: {'springgreen' if entry.winner else 'red'}'>{entry.winner}</span>",
|
288 |
+
entry.repository,
|
289 |
+
round(entry.score, 3),
|
290 |
+
f"{entry.generation_time:.3f}s",
|
291 |
+
f"{entry.similarity:.3f}",
|
292 |
+
f"{entry.size / 1_000_000_000:.3f}GB",
|
293 |
+
f"{entry.vram_used / 1_000_000_000:.3f}GB",
|
294 |
+
f"{entry.watts_used:.3f}W",
|
295 |
+
entry.hotkey,
|
296 |
+
) for entry in sorted(entries.values(), key=lambda entry: (entry.winner, entry.score), reverse=True)]
|
297 |
+
|
298 |
+
return gr.Dataframe(
|
299 |
+
sorted_entries,
|
300 |
+
headers=["Uid", "Winner", "Model", "Score", "Gen Time", "Similarity", "Size", "VRAM Usage", "Power Usage", "Hotkey"],
|
301 |
+
datatype=["number", "markdown", "markdown", "number", "markdown", "number", "markdown", "markdown", "markdown", "markdown"],
|
302 |
+
label=f"Last updated: {last_refresh.strftime('%Y-%m-%d %I:%M:%S %p')} EST",
|
303 |
+
interactive=False,
|
304 |
+
)
|
305 |
+
|
306 |
+
|
307 |
+
dropdown_value = SOURCE_VALIDATOR_UID
|
308 |
+
|
309 |
+
|
310 |
+
def set_checkbox_value(value: int):
|
311 |
+
global dropdown_value
|
312 |
+
dropdown_value = value
|
313 |
+
|
314 |
+
|
315 |
+
def main():
|
316 |
+
refresh()
|
317 |
with demo:
|
318 |
gr.Image(
|
319 |
"cover.png",
|
|
|
329 |
"""
|
330 |
<center>
|
331 |
<h1 style="font-size: 50px"> SN39 EdgeMaxxing Leaderboard </h1>
|
332 |
+
|
333 |
This leaderboard for SN39 tracks the results and top model submissions from current and previous contests.
|
334 |
</center>
|
335 |
""")
|
336 |
|
337 |
+
with gr.Accordion(f"Contest #1 Submission Leader: New Dream SDXL on NVIDIA RTX 4090s"):
|
338 |
dropdown = gr.Dropdown(
|
339 |
get_choices(),
|
340 |
value=SOURCE_VALIDATOR_UID,
|
|
|
342 |
label="Source Validator"
|
343 |
)
|
344 |
|
345 |
+
table = get_data(dropdown.value)
|
346 |
+
table.attach_load_event(lambda _: get_data(dropdown_value), REFRESH_RATE, [table])
|
347 |
+
dropdown.change(lambda uid: get_data(uid), [dropdown], [table])
|
|
|
|
|
|
|
348 |
|
349 |
graph = gr.Plot()
|
350 |
+
graph.attach_load_event(lambda _: create_graph(runs[dropdown_value]), REFRESH_RATE, [graph])
|
|
|
351 |
dropdown.change(lambda uid: create_graph(runs[uid]), [dropdown], [graph])
|
|
|
352 |
|
353 |
+
dropdown.change(set_checkbox_value, [dropdown]) # TODO hacky
|
354 |
|
355 |
+
demo.queue().launch()
|
|
|
|
|
356 |
|
|
|
|
|
357 |
|
358 |
+
if __name__ == "__main__":
|
359 |
+
main()
|
|
|
|