PathoAI / app.py
woffluon's picture
Update app.py
3ba58fb verified
import streamlit as st
import cv2
import numpy as np
import time
import traceback
import os
import requests
from core.config import Config
from core.inference import InferenceEngine
from core.image_processing import ImageProcessor
from ui.dashboard import (
render_css,
render_header,
render_classification_panel,
render_segmentation_panel
)
# Model indirme linkleri (Mediafire)
MODEL_URLS = {
"resnet50_best.keras": {
"url": "https://download856.mediafire.com/adgstqbgkjxgveGcReePKbNM5yfHD5-7WklKOfkdJ17PWV4fWzvogI4HK4txrh7NaUS2y3ueXajBQMEv_mWe7m3ZDRilFOt08fvbs-fvkPXjGTMvpJoTWX2M6HeTRSWKBVPdOAff3R6NlPU-pufS1dSr7tBKZ52AF_GQ6PDN01dMRGpg/0ngwzsbwaeachuk/resnet50_best.keras",
"description": "ResNet50 Siniflandirici",
"size_mb": 212
},
"cia_net_final_sota.keras": {
"url": "https://download1348.mediafire.com/i8wyh8zr3ovgoUSJ-RvgFtIKPN1irWydIKZ_aqL7wHjFQTLw8mDEP-LcGkTftTxvxXdv7Z4Hf5QPEXGnHEfa1fqAewHaHIo6VwDoY45mCQQC4UnfthDrzl_F6NGHA0guLc68LeVb8WPfJVuXlUJ-Nlfr2rNieyAmFcII7CJ_XgI6Yd_V/oyoebv9lor7s8g9/cia_net_final_sota.keras",
"description": "CIA-Net Segmentasyon",
"size_mb": 150
}
}
def format_size(bytes_size):
"""Byte boyutunu okunabilir formata cevir."""
for unit in ['B', 'KB', 'MB', 'GB']:
if bytes_size < 1024:
return f"{bytes_size:.1f} {unit}"
bytes_size /= 1024
return f"{bytes_size:.1f} TB"
def download_model_with_progress(model_name, url, save_path, progress_bar, status_container):
"""Model dosyasini progress bar ile indir."""
try:
# Baslangic istegi
response = requests.get(url, stream=True, timeout=30)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
downloaded = 0
chunk_size = 1024 * 1024 # 1MB chunks
# Gecici dosyaya yaz
temp_path = save_path + ".tmp"
with open(temp_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=chunk_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
# Progress guncelle
if total_size > 0:
progress = downloaded / total_size
progress_bar.progress(progress)
status_container.markdown(
f"**{model_name}** indiriliyor... "
f"`{format_size(downloaded)}` / `{format_size(total_size)}` "
f"({progress*100:.1f}%)"
)
# Basarili indirme sonrasi dosyayi tasi
os.rename(temp_path, save_path)
return True
except requests.exceptions.Timeout:
status_container.error("Baglanti zaman asimina ugradi. Tekrar deneyin.")
return False
except requests.exceptions.ConnectionError:
status_container.error("Internet baglantisi bulunamadi.")
return False
except Exception as e:
status_container.error(f"Indirme hatasi: {str(e)}")
# Gecici dosyayi temizle
temp_path = save_path + ".tmp"
if os.path.exists(temp_path):
os.remove(temp_path)
return False
def check_and_download_models():
"""Model dosyalarini kontrol et ve eksikleri indir."""
os.makedirs(Config.MODEL_DIR, exist_ok=True)
missing_models = []
if not os.path.exists(Config.CLS_MODEL_PATH):
missing_models.append(("resnet50_best.keras", Config.CLS_MODEL_PATH))
if not os.path.exists(Config.SEG_MODEL_PATH):
missing_models.append(("cia_net_final_sota.keras", Config.SEG_MODEL_PATH))
if not missing_models:
return True
# Indirme arayuzu
st.markdown("---")
st.subheader("Model Dosyalari Eksik")
# Eksik modelleri listele
total_size = 0
for model_name, _ in missing_models:
info = MODEL_URLS.get(model_name, {})
size = info.get("size_mb", 0)
desc = info.get("description", model_name)
total_size += size
st.markdown(f"- **{desc}** (`{model_name}`) - ~{size} MB")
st.info(f"Toplam indirme boyutu: ~{total_size} MB")
# Indirme butonu
if st.button("Modelleri Indir", type="primary"):
for i, (model_name, save_path) in enumerate(missing_models):
info = MODEL_URLS.get(model_name, {})
url = info.get("url", "")
desc = info.get("description", model_name)
st.markdown(f"### {i+1}/{len(missing_models)}: {desc}")
progress_bar = st.progress(0)
status_container = st.empty()
success = download_model_with_progress(
model_name, url, save_path, progress_bar, status_container
)
if success:
status_container.success(f"{desc} basariyla indirildi!")
else:
st.error("Indirme basarisiz. Sayfa yenilenerek tekrar deneyin.")
return False
st.success("Tum modeller indirildi! Sayfa yenileniyor...")
time.sleep(2)
st.rerun()
return False
def main():
render_css()
# Model dosyalarini kontrol et ve gerekirse indir
if not check_and_download_models():
st.error("Model dosyalari yuklenemedi. Lutfen internet baglantinizi kontrol edin.")
st.stop()
with st.sidebar:
st.title("Kontrol Paneli")
st.info("Sistem: PathoAI\nVersiyon: 1.0.0")
st.markdown("### Analiz Ayarları")
use_norm = st.toggle("Stain Normalization", value=True)
st.markdown("---")
st.write("© 2026 PathoAI - Tüm Hakları Saklıdır")
render_header(Config.APP_NAME, "2.1.0")
engine = InferenceEngine()
uploaded_file = st.file_uploader("Analiz edilecek histopatoloji görüntüsünü yükleyin", type=['png', 'jpg', 'jpeg', 'tif'])
if uploaded_file:
with st.spinner("Yapay Zeka Motorları Yükleniyor..."):
if not engine.load_models():
st.error("Model dosyaları yüklenemedi.")
st.stop()
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
img_bgr = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
if st.button("Analizi Başlat", type="primary"):
progress_bar = st.progress(0)
status_text = st.empty()
log_container = st.expander("Detaylı İşlem Logları", expanded=False)
try:
start_time = time.perf_counter()
with log_container:
st.write("**Analiz başlatıldı...**")
st.write(f"Görüntü boyutu: {img_rgb.shape[1]}x{img_rgb.shape[0]} piksel")
# Ön işleme
t_pre_start = time.perf_counter()
status_text.text("Ön işleme yapılıyor...")
progress_bar.progress(10)
if use_norm:
with log_container:
st.write("Macenko stain normalization uygulanıyor...")
proc_img = ImageProcessor.macenko_normalize(img_rgb)
with log_container:
st.write("Renk normalizasyonu tamamlandı")
else:
proc_img = img_rgb
with log_container:
st.write("Normalizasyon atlandı (ham görüntü kullanılıyor)")
t_pre_end = time.perf_counter()
with log_container:
st.write(f"Ön işleme süresi: **{(t_pre_end - t_pre_start):.3f} s**")
progress_bar.progress(20)
# Sınıflandırma
t_cls_start = time.perf_counter()
status_text.text("ResNet50 ile doku sınıflandırması yapılıyor...")
with log_container:
st.write("**ResNet50 Classifier çalışıyor...**")
c_idx, cls_conf, tensor = engine.predict_classification(proc_img)
t_cls_end = time.perf_counter()
with log_container:
st.write(f"Tanı: **{Config.CLASSES[c_idx]}**")
st.write(f"Güven skoru: **%{cls_conf*100:.2f}**")
st.write(f"Sınıflandırma süresi: **{(t_cls_end - t_cls_start):.3f} s**")
progress_bar.progress(40)
# Grad-CAM
t_cam_start = time.perf_counter()
status_text.text("Grad-CAM aktivasyon haritası oluşturuluyor...")
with log_container:
st.write("**Grad-CAM XAI analizi başlatılıyor...**")
heatmap = engine.generate_gradcam(tensor, c_idx)
t_cam_end = time.perf_counter()
with log_container:
if np.max(heatmap) > 0:
st.write("Grad-CAM başarıyla oluşturuldu")
else:
st.warning("Grad-CAM oluşturulamadı (boş heatmap)")
st.write(f"Grad-CAM süresi: **{(t_cam_end - t_cam_start):.3f} s**")
progress_bar.progress(60)
# Segmentasyon
t_seg_start = time.perf_counter()
status_text.text("CIA-Net ile hücre segmentasyonu yapılıyor...")
with log_container:
st.write("**CIA-Net Segmenter çalışıyor...**")
nuc_map, con_map, seg_conf = engine.predict_segmentation(proc_img)
t_seg_end = time.perf_counter()
with log_container:
st.write(f"Nükleus haritası oluşturuldu")
st.write(f"Segmentasyon güveni: **%{seg_conf*100:.2f}**")
st.write(f"Segmentasyon süresi: **{(t_seg_end - t_seg_start):.3f} s**")
progress_bar.progress(75)
# Post-processing
t_post_start = time.perf_counter()
status_text.text("Hücre ayrıştırma ve morfolojik analiz...")
with log_container:
st.write("**Watershed algoritması uygulanıyor...**")
mask = ImageProcessor.adaptive_watershed(nuc_map, con_map)
t_watershed_end = time.perf_counter()
with log_container:
unique_cells = len(np.unique(mask)) - 1
st.write(f"Tespit edilen hücre sayısı: **{unique_cells}**")
st.write(f"Watershed/post-processing süresi: **{(t_watershed_end - t_post_start):.3f} s**")
progress_bar.progress(85)
with log_container:
st.write("**Belirsizlik (entropy) hesaplanıyor...**")
entropy = ImageProcessor.calculate_entropy(nuc_map)
t_entropy_end = time.perf_counter()
with log_container:
st.write(f"Ortalama entropi: **{np.mean(entropy):.3f}**")
st.write(f"Entropi hesaplama süresi: **{(t_entropy_end - t_watershed_end):.3f} s**")
progress_bar.progress(90)
with log_container:
st.write("**Morfometrik özellikler çıkarılıyor...**")
stats = ImageProcessor.calculate_morphometrics(mask)
t_morph_end = time.perf_counter()
with log_container:
if not stats.empty:
st.write(f"{len(stats)} hücre için morfoloji hesaplandı")
st.write(f" - Ortalama alan: {stats['Area'].mean():.1f} px²")
st.write(f" - Ortalama dairesellik: {stats['Circularity'].mean():.3f}")
else:
st.warning("Hücre tespit edilemedi")
st.write(f"Morfometrik analiz süresi: **{(t_morph_end - t_entropy_end):.3f} s**")
progress_bar.progress(100)
elapsed = time.perf_counter() - start_time
with log_container:
st.success(f"**Analiz tamamlandı!** (Süre: {elapsed:.2f} saniye)")
status_text.empty()
# Sonuçları göster
render_classification_panel(img_rgb, Config.CLASSES[c_idx], cls_conf, seg_conf, heatmap)
render_segmentation_panel(img_rgb, nuc_map, entropy, mask, stats)
except Exception as e:
st.error(f"Hata: {e}")
with log_container:
st.code(traceback.format_exc())
if __name__ == "__main__":
main()