Spaces:
Sleeping
Sleeping
| # Copyright (c) 2024 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
| # LICENSE is in incl_licenses directory. | |
| import warnings | |
| warnings.simplefilter(action="ignore", category=FutureWarning) | |
| import itertools | |
| import os | |
| import time | |
| import argparse | |
| import json | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.utils.tensorboard import SummaryWriter | |
| from torch.utils.data import DistributedSampler, DataLoader | |
| import torch.multiprocessing as mp | |
| from torch.distributed import init_process_group | |
| from torch.nn.parallel import DistributedDataParallel | |
| from env import AttrDict, build_env | |
| from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE | |
| from bigvgan import BigVGAN | |
| from discriminators import ( | |
| MultiPeriodDiscriminator, | |
| MultiResolutionDiscriminator, | |
| MultiBandDiscriminator, | |
| MultiScaleSubbandCQTDiscriminator, | |
| ) | |
| from loss import ( | |
| feature_loss, | |
| generator_loss, | |
| discriminator_loss, | |
| MultiScaleMelSpectrogramLoss, | |
| ) | |
| from utils import ( | |
| plot_spectrogram, | |
| plot_spectrogram_clipped, | |
| scan_checkpoint, | |
| load_checkpoint, | |
| save_checkpoint, | |
| save_audio, | |
| ) | |
| import torchaudio as ta | |
| from pesq import pesq | |
| from tqdm import tqdm | |
| import auraloss | |
| torch.backends.cudnn.benchmark = False | |
| def train(rank, a, h): | |
| if h.num_gpus > 1: | |
| # initialize distributed | |
| init_process_group( | |
| backend=h.dist_config["dist_backend"], | |
| init_method=h.dist_config["dist_url"], | |
| world_size=h.dist_config["world_size"] * h.num_gpus, | |
| rank=rank, | |
| ) | |
| # Set seed and device | |
| torch.cuda.manual_seed(h.seed) | |
| torch.cuda.set_device(rank) | |
| device = torch.device(f"cuda:{rank:d}") | |
| # Define BigVGAN generator | |
| generator = BigVGAN(h).to(device) | |
| # Define discriminators. MPD is used by default | |
| mpd = MultiPeriodDiscriminator(h).to(device) | |
| # Define additional discriminators. BigVGAN-v1 uses UnivNet's MRD as default | |
| # New in BigVGAN-v2: option to switch to new discriminators: MultiBandDiscriminator / MultiScaleSubbandCQTDiscriminator | |
| if h.get("use_mbd_instead_of_mrd", False): # Switch to MBD | |
| print( | |
| "[INFO] using MultiBandDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator" | |
| ) | |
| # Variable name is kept as "mrd" for backward compatibility & minimal code change | |
| mrd = MultiBandDiscriminator(h).to(device) | |
| elif h.get("use_cqtd_instead_of_mrd", False): # Switch to CQTD | |
| print( | |
| "[INFO] using MultiScaleSubbandCQTDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator" | |
| ) | |
| mrd = MultiScaleSubbandCQTDiscriminator(h).to(device) | |
| else: # Fallback to original MRD in BigVGAN-v1 | |
| mrd = MultiResolutionDiscriminator(h).to(device) | |
| # New in BigVGAN-v2: option to switch to multi-scale L1 mel loss | |
| if h.get("use_multiscale_melloss", False): | |
| print( | |
| "[INFO] using multi-scale Mel l1 loss of BigVGAN-v2 instead of the original single-scale loss" | |
| ) | |
| fn_mel_loss_multiscale = MultiScaleMelSpectrogramLoss( | |
| sampling_rate=h.sampling_rate | |
| ) # NOTE: accepts waveform as input | |
| else: | |
| fn_mel_loss_singlescale = F.l1_loss | |
| # Print the model & number of parameters, and create or scan the latest checkpoint from checkpoints directory | |
| if rank == 0: | |
| print(generator) | |
| print(mpd) | |
| print(mrd) | |
| print(f"Generator params: {sum(p.numel() for p in generator.parameters())}") | |
| print(f"Discriminator mpd params: {sum(p.numel() for p in mpd.parameters())}") | |
| print(f"Discriminator mrd params: {sum(p.numel() for p in mrd.parameters())}") | |
| os.makedirs(a.checkpoint_path, exist_ok=True) | |
| print(f"Checkpoints directory: {a.checkpoint_path}") | |
| if os.path.isdir(a.checkpoint_path): | |
| # New in v2.1: If the step prefix pattern-based checkpoints are not found, also check for renamed files in Hugging Face Hub to resume training | |
| cp_g = scan_checkpoint( | |
| a.checkpoint_path, prefix="g_", renamed_file="bigvgan_generator.pt" | |
| ) | |
| cp_do = scan_checkpoint( | |
| a.checkpoint_path, | |
| prefix="do_", | |
| renamed_file="bigvgan_discriminator_optimizer.pt", | |
| ) | |
| # Load the latest checkpoint if exists | |
| steps = 0 | |
| if cp_g is None or cp_do is None: | |
| state_dict_do = None | |
| last_epoch = -1 | |
| else: | |
| state_dict_g = load_checkpoint(cp_g, device) | |
| state_dict_do = load_checkpoint(cp_do, device) | |
| generator.load_state_dict(state_dict_g["generator"]) | |
| mpd.load_state_dict(state_dict_do["mpd"]) | |
| mrd.load_state_dict(state_dict_do["mrd"]) | |
| steps = state_dict_do["steps"] + 1 | |
| last_epoch = state_dict_do["epoch"] | |
| # Initialize DDP, optimizers, and schedulers | |
| if h.num_gpus > 1: | |
| generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) | |
| mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) | |
| mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device) | |
| optim_g = torch.optim.AdamW( | |
| generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2] | |
| ) | |
| optim_d = torch.optim.AdamW( | |
| itertools.chain(mrd.parameters(), mpd.parameters()), | |
| h.learning_rate, | |
| betas=[h.adam_b1, h.adam_b2], | |
| ) | |
| if state_dict_do is not None: | |
| optim_g.load_state_dict(state_dict_do["optim_g"]) | |
| optim_d.load_state_dict(state_dict_do["optim_d"]) | |
| scheduler_g = torch.optim.lr_scheduler.ExponentialLR( | |
| optim_g, gamma=h.lr_decay, last_epoch=last_epoch | |
| ) | |
| scheduler_d = torch.optim.lr_scheduler.ExponentialLR( | |
| optim_d, gamma=h.lr_decay, last_epoch=last_epoch | |
| ) | |
| # Define training and validation datasets | |
| """ | |
| unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset | |
| Example: trained on LibriTTS, validate on VCTK | |
| """ | |
| training_filelist, validation_filelist, list_unseen_validation_filelist = ( | |
| get_dataset_filelist(a) | |
| ) | |
| trainset = MelDataset( | |
| training_filelist, | |
| h, | |
| h.segment_size, | |
| h.n_fft, | |
| h.num_mels, | |
| h.hop_size, | |
| h.win_size, | |
| h.sampling_rate, | |
| h.fmin, | |
| h.fmax, | |
| shuffle=False if h.num_gpus > 1 else True, | |
| fmax_loss=h.fmax_for_loss, | |
| device=device, | |
| fine_tuning=a.fine_tuning, | |
| base_mels_path=a.input_mels_dir, | |
| is_seen=True, | |
| ) | |
| train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
| train_loader = DataLoader( | |
| trainset, | |
| num_workers=h.num_workers, | |
| shuffle=False, | |
| sampler=train_sampler, | |
| batch_size=h.batch_size, | |
| pin_memory=True, | |
| drop_last=True, | |
| ) | |
| if rank == 0: | |
| validset = MelDataset( | |
| validation_filelist, | |
| h, | |
| h.segment_size, | |
| h.n_fft, | |
| h.num_mels, | |
| h.hop_size, | |
| h.win_size, | |
| h.sampling_rate, | |
| h.fmin, | |
| h.fmax, | |
| False, | |
| False, | |
| fmax_loss=h.fmax_for_loss, | |
| device=device, | |
| fine_tuning=a.fine_tuning, | |
| base_mels_path=a.input_mels_dir, | |
| is_seen=True, | |
| ) | |
| validation_loader = DataLoader( | |
| validset, | |
| num_workers=1, | |
| shuffle=False, | |
| sampler=None, | |
| batch_size=1, | |
| pin_memory=True, | |
| drop_last=True, | |
| ) | |
| list_unseen_validset = [] | |
| list_unseen_validation_loader = [] | |
| for i in range(len(list_unseen_validation_filelist)): | |
| unseen_validset = MelDataset( | |
| list_unseen_validation_filelist[i], | |
| h, | |
| h.segment_size, | |
| h.n_fft, | |
| h.num_mels, | |
| h.hop_size, | |
| h.win_size, | |
| h.sampling_rate, | |
| h.fmin, | |
| h.fmax, | |
| False, | |
| False, | |
| fmax_loss=h.fmax_for_loss, | |
| device=device, | |
| fine_tuning=a.fine_tuning, | |
| base_mels_path=a.input_mels_dir, | |
| is_seen=False, | |
| ) | |
| unseen_validation_loader = DataLoader( | |
| unseen_validset, | |
| num_workers=1, | |
| shuffle=False, | |
| sampler=None, | |
| batch_size=1, | |
| pin_memory=True, | |
| drop_last=True, | |
| ) | |
| list_unseen_validset.append(unseen_validset) | |
| list_unseen_validation_loader.append(unseen_validation_loader) | |
| # Tensorboard logger | |
| sw = SummaryWriter(os.path.join(a.checkpoint_path, "logs")) | |
| if a.save_audio: # Also save audio to disk if --save_audio is set to True | |
| os.makedirs(os.path.join(a.checkpoint_path, "samples"), exist_ok=True) | |
| """ | |
| Validation loop, "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset). | |
| If the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors | |
| """ | |
| def validate(rank, a, h, loader, mode="seen"): | |
| assert rank == 0, "validate should only run on rank=0" | |
| generator.eval() | |
| torch.cuda.empty_cache() | |
| val_err_tot = 0 | |
| val_pesq_tot = 0 | |
| val_mrstft_tot = 0 | |
| # Modules for evaluation metrics | |
| pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda() | |
| loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda") | |
| if a.save_audio: # Also save audio to disk if --save_audio is set to True | |
| os.makedirs( | |
| os.path.join(a.checkpoint_path, "samples", f"gt_{mode}"), | |
| exist_ok=True, | |
| ) | |
| os.makedirs( | |
| os.path.join(a.checkpoint_path, "samples", f"{mode}_{steps:08d}"), | |
| exist_ok=True, | |
| ) | |
| with torch.no_grad(): | |
| print(f"step {steps} {mode} speaker validation...") | |
| # Loop over validation set and compute metrics | |
| for j, batch in enumerate(tqdm(loader)): | |
| x, y, _, y_mel = batch | |
| y = y.to(device) | |
| if hasattr(generator, "module"): | |
| y_g_hat = generator.module(x.to(device)) | |
| else: | |
| y_g_hat = generator(x.to(device)) | |
| y_mel = y_mel.to(device, non_blocking=True) | |
| y_g_hat_mel = mel_spectrogram( | |
| y_g_hat.squeeze(1), | |
| h.n_fft, | |
| h.num_mels, | |
| h.sampling_rate, | |
| h.hop_size, | |
| h.win_size, | |
| h.fmin, | |
| h.fmax_for_loss, | |
| ) | |
| min_t = min(y_mel.size(-1), y_g_hat_mel.size(-1)) | |
| val_err_tot += F.l1_loss(y_mel[...,:min_t], y_g_hat_mel[...,:min_t]).item() | |
| # PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out) | |
| if ( | |
| not "nonspeech" in mode | |
| ): # Skips if the name of dataset (in mode string) contains "nonspeech" | |
| # Resample to 16000 for pesq | |
| y_16k = pesq_resampler(y) | |
| y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1)) | |
| y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy() | |
| y_g_hat_int_16k = ( | |
| (y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy() | |
| ) | |
| val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, "wb") | |
| # MRSTFT calculation | |
| min_t = min(y.size(-1), y_g_hat.size(-1)) | |
| val_mrstft_tot += loss_mrstft(y_g_hat[...,:min_t], y[...,:min_t]).item() | |
| # Log audio and figures to Tensorboard | |
| if j % a.eval_subsample == 0: # Subsample every nth from validation set | |
| if steps >= 0: | |
| sw.add_audio(f"gt_{mode}/y_{j}", y[0], steps, h.sampling_rate) | |
| if ( | |
| a.save_audio | |
| ): # Also save audio to disk if --save_audio is set to True | |
| save_audio( | |
| y[0], | |
| os.path.join( | |
| a.checkpoint_path, | |
| "samples", | |
| f"gt_{mode}", | |
| f"{j:04d}.wav", | |
| ), | |
| h.sampling_rate, | |
| ) | |
| sw.add_figure( | |
| f"gt_{mode}/y_spec_{j}", | |
| plot_spectrogram(x[0]), | |
| steps, | |
| ) | |
| sw.add_audio( | |
| f"generated_{mode}/y_hat_{j}", | |
| y_g_hat[0], | |
| steps, | |
| h.sampling_rate, | |
| ) | |
| if ( | |
| a.save_audio | |
| ): # Also save audio to disk if --save_audio is set to True | |
| save_audio( | |
| y_g_hat[0, 0], | |
| os.path.join( | |
| a.checkpoint_path, | |
| "samples", | |
| f"{mode}_{steps:08d}", | |
| f"{j:04d}.wav", | |
| ), | |
| h.sampling_rate, | |
| ) | |
| # Spectrogram of synthesized audio | |
| y_hat_spec = mel_spectrogram( | |
| y_g_hat.squeeze(1), | |
| h.n_fft, | |
| h.num_mels, | |
| h.sampling_rate, | |
| h.hop_size, | |
| h.win_size, | |
| h.fmin, | |
| h.fmax, | |
| ) | |
| sw.add_figure( | |
| f"generated_{mode}/y_hat_spec_{j}", | |
| plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), | |
| steps, | |
| ) | |
| """ | |
| Visualization of spectrogram difference between GT and synthesized audio, difference higher than 1 is clipped for better visualization. | |
| """ | |
| spec_delta = torch.clamp( | |
| torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()), | |
| min=1e-6, | |
| max=1.0, | |
| ) | |
| sw.add_figure( | |
| f"delta_dclip1_{mode}/spec_{j}", | |
| plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.0), | |
| steps, | |
| ) | |
| val_err = val_err_tot / (j + 1) | |
| val_pesq = val_pesq_tot / (j + 1) | |
| val_mrstft = val_mrstft_tot / (j + 1) | |
| # Log evaluation metrics to Tensorboard | |
| sw.add_scalar(f"validation_{mode}/mel_spec_error", val_err, steps) | |
| sw.add_scalar(f"validation_{mode}/pesq", val_pesq, steps) | |
| sw.add_scalar(f"validation_{mode}/mrstft", val_mrstft, steps) | |
| generator.train() | |
| # If the checkpoint is loaded, start with validation loop | |
| if steps != 0 and rank == 0 and not a.debug: | |
| if not a.skip_seen: | |
| validate( | |
| rank, | |
| a, | |
| h, | |
| validation_loader, | |
| mode=f"seen_{train_loader.dataset.name}", | |
| ) | |
| for i in range(len(list_unseen_validation_loader)): | |
| validate( | |
| rank, | |
| a, | |
| h, | |
| list_unseen_validation_loader[i], | |
| mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}", | |
| ) | |
| # Exit the script if --evaluate is set to True | |
| if a.evaluate: | |
| exit() | |
| # Main training loop | |
| generator.train() | |
| mpd.train() | |
| mrd.train() | |
| for epoch in range(max(0, last_epoch), a.training_epochs): | |
| if rank == 0: | |
| start = time.time() | |
| print(f"Epoch: {epoch + 1}") | |
| if h.num_gpus > 1: | |
| train_sampler.set_epoch(epoch) | |
| for i, batch in enumerate(train_loader): | |
| if rank == 0: | |
| start_b = time.time() | |
| x, y, _, y_mel = batch | |
| x = x.to(device, non_blocking=True) | |
| y = y.to(device, non_blocking=True) | |
| y_mel = y_mel.to(device, non_blocking=True) | |
| y = y.unsqueeze(1) | |
| y_g_hat = generator(x) | |
| y_g_hat_mel = mel_spectrogram( | |
| y_g_hat.squeeze(1), | |
| h.n_fft, | |
| h.num_mels, | |
| h.sampling_rate, | |
| h.hop_size, | |
| h.win_size, | |
| h.fmin, | |
| h.fmax_for_loss, | |
| ) | |
| optim_d.zero_grad() | |
| # MPD | |
| y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
| loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss( | |
| y_df_hat_r, y_df_hat_g | |
| ) | |
| # MRD | |
| y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach()) | |
| loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss( | |
| y_ds_hat_r, y_ds_hat_g | |
| ) | |
| loss_disc_all = loss_disc_s + loss_disc_f | |
| # Set clip_grad_norm value | |
| clip_grad_norm = h.get("clip_grad_norm", 1000.0) # Default to 1000 | |
| # Whether to freeze D for initial training steps | |
| if steps >= a.freeze_step: | |
| loss_disc_all.backward() | |
| grad_norm_mpd = torch.nn.utils.clip_grad_norm_( | |
| mpd.parameters(), clip_grad_norm | |
| ) | |
| grad_norm_mrd = torch.nn.utils.clip_grad_norm_( | |
| mrd.parameters(), clip_grad_norm | |
| ) | |
| optim_d.step() | |
| else: | |
| print( | |
| f"[WARNING] skipping D training for the first {a.freeze_step} steps" | |
| ) | |
| grad_norm_mpd = 0.0 | |
| grad_norm_mrd = 0.0 | |
| # Generator | |
| optim_g.zero_grad() | |
| # L1 Mel-Spectrogram Loss | |
| lambda_melloss = h.get( | |
| "lambda_melloss", 45.0 | |
| ) # Defaults to 45 in BigVGAN-v1 if not set | |
| if h.get("use_multiscale_melloss", False): # uses wav <y, y_g_hat> for loss | |
| loss_mel = fn_mel_loss_multiscale(y, y_g_hat) * lambda_melloss | |
| else: # Uses mel <y_mel, y_g_hat_mel> for loss | |
| loss_mel = fn_mel_loss_singlescale(y_mel, y_g_hat_mel) * lambda_melloss | |
| # MPD loss | |
| y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
| loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
| loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
| # MRD loss | |
| y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat) | |
| loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
| loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
| if steps >= a.freeze_step: | |
| loss_gen_all = ( | |
| loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
| ) | |
| else: | |
| print( | |
| f"[WARNING] using regression loss only for G for the first {a.freeze_step} steps" | |
| ) | |
| loss_gen_all = loss_mel | |
| loss_gen_all.backward() | |
| grad_norm_g = torch.nn.utils.clip_grad_norm_( | |
| generator.parameters(), clip_grad_norm | |
| ) | |
| optim_g.step() | |
| if rank == 0: | |
| # STDOUT logging | |
| if steps % a.stdout_interval == 0: | |
| mel_error = ( | |
| loss_mel.item() / lambda_melloss | |
| ) # Log training mel regression loss to stdout | |
| print( | |
| f"Steps: {steps:d}, " | |
| f"Gen Loss Total: {loss_gen_all:4.3f}, " | |
| f"Mel Error: {mel_error:4.3f}, " | |
| f"s/b: {time.time() - start_b:4.3f} " | |
| f"lr: {optim_g.param_groups[0]['lr']:4.7f} " | |
| f"grad_norm_g: {grad_norm_g:4.3f}" | |
| ) | |
| # Checkpointing | |
| if steps % a.checkpoint_interval == 0 and steps != 0: | |
| checkpoint_path = f"{a.checkpoint_path}/g_{steps:08d}" | |
| save_checkpoint( | |
| checkpoint_path, | |
| { | |
| "generator": ( | |
| generator.module if h.num_gpus > 1 else generator | |
| ).state_dict() | |
| }, | |
| ) | |
| checkpoint_path = f"{a.checkpoint_path}/do_{steps:08d}" | |
| save_checkpoint( | |
| checkpoint_path, | |
| { | |
| "mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(), | |
| "mrd": (mrd.module if h.num_gpus > 1 else mrd).state_dict(), | |
| "optim_g": optim_g.state_dict(), | |
| "optim_d": optim_d.state_dict(), | |
| "steps": steps, | |
| "epoch": epoch, | |
| }, | |
| ) | |
| # Tensorboard summary logging | |
| if steps % a.summary_interval == 0: | |
| mel_error = ( | |
| loss_mel.item() / lambda_melloss | |
| ) # Log training mel regression loss to tensorboard | |
| sw.add_scalar("training/gen_loss_total", loss_gen_all.item(), steps) | |
| sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
| sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps) | |
| sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps) | |
| sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps) | |
| sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps) | |
| sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps) | |
| sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps) | |
| sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps) | |
| sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps) | |
| sw.add_scalar("training/grad_norm_g", grad_norm_g, steps) | |
| sw.add_scalar( | |
| "training/learning_rate_d", scheduler_d.get_last_lr()[0], steps | |
| ) | |
| sw.add_scalar( | |
| "training/learning_rate_g", scheduler_g.get_last_lr()[0], steps | |
| ) | |
| sw.add_scalar("training/epoch", epoch + 1, steps) | |
| # Validation | |
| if steps % a.validation_interval == 0: | |
| # Plot training input x so far used | |
| for i_x in range(x.shape[0]): | |
| sw.add_figure( | |
| f"training_input/x_{i_x}", | |
| plot_spectrogram(x[i_x].cpu()), | |
| steps, | |
| ) | |
| sw.add_audio( | |
| f"training_input/y_{i_x}", | |
| y[i_x][0], | |
| steps, | |
| h.sampling_rate, | |
| ) | |
| # Seen and unseen speakers validation loops | |
| if not a.debug and steps != 0: | |
| validate( | |
| rank, | |
| a, | |
| h, | |
| validation_loader, | |
| mode=f"seen_{train_loader.dataset.name}", | |
| ) | |
| for i in range(len(list_unseen_validation_loader)): | |
| validate( | |
| rank, | |
| a, | |
| h, | |
| list_unseen_validation_loader[i], | |
| mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}", | |
| ) | |
| steps += 1 | |
| # BigVGAN-v2 learning rate scheduler is changed from epoch-level to step-level | |
| scheduler_g.step() | |
| scheduler_d.step() | |
| if rank == 0: | |
| print( | |
| f"Time taken for epoch {epoch + 1} is {int(time.time() - start)} sec\n" | |
| ) | |
| def main(): | |
| print("Initializing Training Process..") | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--group_name", default=None) | |
| parser.add_argument("--input_wavs_dir", default="LibriTTS") | |
| parser.add_argument("--input_mels_dir", default="ft_dataset") | |
| parser.add_argument( | |
| "--input_training_file", default="tests/LibriTTS/train-full.txt" | |
| ) | |
| parser.add_argument( | |
| "--input_validation_file", default="tests/LibriTTS/val-full.txt" | |
| ) | |
| parser.add_argument( | |
| "--list_input_unseen_wavs_dir", | |
| nargs="+", | |
| default=["tests/LibriTTS", "tests/LibriTTS"], | |
| ) | |
| parser.add_argument( | |
| "--list_input_unseen_validation_file", | |
| nargs="+", | |
| default=["tests/LibriTTS/dev-clean.txt", "tests/LibriTTS/dev-other.txt"], | |
| ) | |
| parser.add_argument("--checkpoint_path", default="exp/bigvgan") | |
| parser.add_argument("--config", default="") | |
| parser.add_argument("--training_epochs", default=100000, type=int) | |
| parser.add_argument("--stdout_interval", default=5, type=int) | |
| parser.add_argument("--checkpoint_interval", default=50000, type=int) | |
| parser.add_argument("--summary_interval", default=100, type=int) | |
| parser.add_argument("--validation_interval", default=50000, type=int) | |
| parser.add_argument( | |
| "--freeze_step", | |
| default=0, | |
| type=int, | |
| help="freeze D for the first specified steps. G only uses regression loss for these steps.", | |
| ) | |
| parser.add_argument("--fine_tuning", default=False, type=bool) | |
| parser.add_argument( | |
| "--debug", | |
| default=False, | |
| type=bool, | |
| help="debug mode. skips validation loop throughout training", | |
| ) | |
| parser.add_argument( | |
| "--evaluate", | |
| default=False, | |
| type=bool, | |
| help="only run evaluation from checkpoint and exit", | |
| ) | |
| parser.add_argument( | |
| "--eval_subsample", | |
| default=5, | |
| type=int, | |
| help="subsampling during evaluation loop", | |
| ) | |
| parser.add_argument( | |
| "--skip_seen", | |
| default=False, | |
| type=bool, | |
| help="skip seen dataset. useful for test set inference", | |
| ) | |
| parser.add_argument( | |
| "--save_audio", | |
| default=False, | |
| type=bool, | |
| help="save audio of test set inference to disk", | |
| ) | |
| a = parser.parse_args() | |
| with open(a.config) as f: | |
| data = f.read() | |
| json_config = json.loads(data) | |
| h = AttrDict(json_config) | |
| build_env(a.config, "config.json", a.checkpoint_path) | |
| torch.manual_seed(h.seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(h.seed) | |
| h.num_gpus = torch.cuda.device_count() | |
| h.batch_size = int(h.batch_size / h.num_gpus) | |
| print(f"Batch size per GPU: {h.batch_size}") | |
| else: | |
| pass | |
| if h.num_gpus > 1: | |
| mp.spawn( | |
| train, | |
| nprocs=h.num_gpus, | |
| args=( | |
| a, | |
| h, | |
| ), | |
| ) | |
| else: | |
| train(0, a, h) | |
| if __name__ == "__main__": | |
| main() | |