Spaces:
Running
Running
wnathanael
commited on
Commit
•
4b38ca9
1
Parent(s):
9622331
Prepared for submit
Browse files- app.py +638 -4
- nlp4web-codebase-main/nlp4web_codebase/__init__.py +0 -0
- nlp4web-codebase-main/nlp4web_codebase/ir/__init__.py +0 -0
- nlp4web-codebase-main/nlp4web_codebase/ir/analysis.py +160 -0
- nlp4web-codebase-main/nlp4web_codebase/ir/data_loaders/__init__.py +35 -0
- nlp4web-codebase-main/nlp4web_codebase/ir/data_loaders/dm.py +22 -0
- nlp4web-codebase-main/nlp4web_codebase/ir/data_loaders/sciq.py +86 -0
- nlp4web-codebase-main/nlp4web_codebase/ir/models/__init__.py +21 -0
- requirements.txt +9 -0
app.py
CHANGED
@@ -1,7 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
+
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
|
6 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document
|
7 |
+
from collections import Counter
|
8 |
+
import tqdm
|
9 |
+
import re
|
10 |
+
import nltk
|
11 |
+
nltk.download("stopwords", quiet=True)
|
12 |
+
from nltk.corpus import stopwords as nltk_stopwords
|
13 |
+
|
14 |
+
LANGUAGE = "english"
|
15 |
+
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
|
16 |
+
stopwords = set(nltk_stopwords.words(LANGUAGE))
|
17 |
+
|
18 |
+
|
19 |
+
def word_splitting(text: str) -> List[str]:
|
20 |
+
return word_splitter(text.lower())
|
21 |
+
|
22 |
+
def lemmatization(words: List[str]) -> List[str]:
|
23 |
+
return words # We ignore lemmatization here for simplicity
|
24 |
+
|
25 |
+
def simple_tokenize(text: str) -> List[str]:
|
26 |
+
words = word_splitting(text)
|
27 |
+
tokenized = list(filter(lambda w: w not in stopwords, words))
|
28 |
+
tokenized = lemmatization(tokenized)
|
29 |
+
return tokenized
|
30 |
+
|
31 |
+
T = TypeVar("T", bound="InvertedIndex")
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class PostingList:
|
35 |
+
term: str # The term
|
36 |
+
docid_postings: List[int] # docid_postings[i] means the docid (int) of the i-th associated posting
|
37 |
+
tweight_postings: List[float] # tweight_postings[i] means the term weight (float) of the i-th associated posting
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class InvertedIndex:
|
42 |
+
posting_lists: List[PostingList] # docid -> posting_list
|
43 |
+
vocab: Dict[str, int]
|
44 |
+
cid2docid: Dict[str, int] # collection_id -> docid
|
45 |
+
collection_ids: List[str] # docid -> collection_id
|
46 |
+
doc_texts: Optional[List[str]] = None # docid -> document text
|
47 |
+
|
48 |
+
def save(self, output_dir: str) -> None:
|
49 |
+
os.makedirs(output_dir, exist_ok=True)
|
50 |
+
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
|
51 |
+
pickle.dump(self, f)
|
52 |
+
|
53 |
+
@classmethod
|
54 |
+
def from_saved(cls: Type[T], saved_dir: str) -> T:
|
55 |
+
index = cls(
|
56 |
+
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
|
57 |
+
)
|
58 |
+
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
|
59 |
+
index = pickle.load(f)
|
60 |
+
return index
|
61 |
+
|
62 |
+
|
63 |
+
# The output of the counting function:
|
64 |
+
@dataclass
|
65 |
+
class Counting:
|
66 |
+
posting_lists: List[PostingList]
|
67 |
+
vocab: Dict[str, int]
|
68 |
+
cid2docid: Dict[str, int]
|
69 |
+
collection_ids: List[str]
|
70 |
+
dfs: List[int] # tid -> df
|
71 |
+
dls: List[int] # docid -> doc length
|
72 |
+
avgdl: float
|
73 |
+
nterms: int
|
74 |
+
doc_texts: Optional[List[str]] = None
|
75 |
+
|
76 |
+
def run_counting(
|
77 |
+
documents: Iterable[Document],
|
78 |
+
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
|
79 |
+
store_raw: bool = True, # store the document text in doc_texts
|
80 |
+
ndocs: Optional[int] = None,
|
81 |
+
show_progress_bar: bool = True,
|
82 |
+
) -> Counting:
|
83 |
+
"""Counting TFs, DFs, doc_lengths, etc."""
|
84 |
+
posting_lists: List[PostingList] = []
|
85 |
+
vocab: Dict[str, int] = {}
|
86 |
+
cid2docid: Dict[str, int] = {}
|
87 |
+
collection_ids: List[str] = []
|
88 |
+
dfs: List[int] = [] # tid -> df
|
89 |
+
dls: List[int] = [] # docid -> doc length
|
90 |
+
nterms: int = 0
|
91 |
+
doc_texts: Optional[List[str]] = []
|
92 |
+
for doc in tqdm.tqdm(
|
93 |
+
documents,
|
94 |
+
desc="Counting",
|
95 |
+
total=ndocs,
|
96 |
+
disable=not show_progress_bar,
|
97 |
+
):
|
98 |
+
if doc.collection_id in cid2docid:
|
99 |
+
continue
|
100 |
+
collection_ids.append(doc.collection_id)
|
101 |
+
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
|
102 |
+
toks = tokenize_fn(doc.text)
|
103 |
+
tok2tf = Counter(toks)
|
104 |
+
dls.append(sum(tok2tf.values()))
|
105 |
+
for tok, tf in tok2tf.items():
|
106 |
+
nterms += tf
|
107 |
+
tid = vocab.get(tok, None)
|
108 |
+
if tid is None:
|
109 |
+
posting_lists.append(
|
110 |
+
PostingList(term=tok, docid_postings=[], tweight_postings=[])
|
111 |
+
)
|
112 |
+
tid = vocab.setdefault(tok, len(vocab))
|
113 |
+
posting_lists[tid].docid_postings.append(docid)
|
114 |
+
posting_lists[tid].tweight_postings.append(tf)
|
115 |
+
if tid < len(dfs):
|
116 |
+
dfs[tid] += 1
|
117 |
+
else:
|
118 |
+
dfs.append(0)
|
119 |
+
if store_raw:
|
120 |
+
doc_texts.append(doc.text)
|
121 |
+
else:
|
122 |
+
doc_texts = None
|
123 |
+
return Counting(
|
124 |
+
posting_lists=posting_lists,
|
125 |
+
vocab=vocab,
|
126 |
+
cid2docid=cid2docid,
|
127 |
+
collection_ids=collection_ids,
|
128 |
+
dfs=dfs,
|
129 |
+
dls=dls,
|
130 |
+
avgdl=sum(dls) / len(dls),
|
131 |
+
nterms=nterms,
|
132 |
+
doc_texts=doc_texts,
|
133 |
+
)
|
134 |
+
|
135 |
+
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
136 |
+
sciq = load_sciq()
|
137 |
+
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
|
138 |
+
|
139 |
+
from dataclasses import asdict, dataclass
|
140 |
+
import math
|
141 |
+
import os
|
142 |
+
from typing import Iterable, List, Optional, Type
|
143 |
+
import tqdm
|
144 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document
|
145 |
+
|
146 |
+
@dataclass
|
147 |
+
class BM25Index(InvertedIndex):
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def tokenize(text: str) -> List[str]:
|
151 |
+
return simple_tokenize(text)
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def cache_term_weights(
|
155 |
+
posting_lists: List[PostingList],
|
156 |
+
total_docs: int,
|
157 |
+
avgdl: float,
|
158 |
+
dfs: List[int],
|
159 |
+
dls: List[int],
|
160 |
+
k1: float,
|
161 |
+
b: float,
|
162 |
+
) -> None:
|
163 |
+
"""Compute term weights and caching"""
|
164 |
+
|
165 |
+
N = total_docs
|
166 |
+
for tid, posting_list in enumerate(
|
167 |
+
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
|
168 |
+
):
|
169 |
+
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
|
170 |
+
for i in range(len(posting_list.docid_postings)):
|
171 |
+
docid = posting_list.docid_postings[i]
|
172 |
+
tf = posting_list.tweight_postings[i]
|
173 |
+
dl = dls[docid]
|
174 |
+
regularized_tf = BM25Index.calc_regularized_tf(
|
175 |
+
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
|
176 |
+
)
|
177 |
+
posting_list.tweight_postings[i] = regularized_tf * idf
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
def calc_regularized_tf(
|
181 |
+
tf: int, dl: float, avgdl: float, k1: float, b: float
|
182 |
+
) -> float:
|
183 |
+
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
|
184 |
+
|
185 |
+
@staticmethod
|
186 |
+
def calc_idf(df: int, N: int):
|
187 |
+
return math.log(1 + (N - df + 0.5) / (df + 0.5))
|
188 |
+
|
189 |
+
@classmethod
|
190 |
+
def build_from_documents(
|
191 |
+
cls: Type[BM25Index],
|
192 |
+
documents: Iterable[Document],
|
193 |
+
store_raw: bool = True,
|
194 |
+
output_dir: Optional[str] = None,
|
195 |
+
ndocs: Optional[int] = None,
|
196 |
+
show_progress_bar: bool = True,
|
197 |
+
k1: float = 0.9,
|
198 |
+
b: float = 0.4,
|
199 |
+
) -> BM25Index:
|
200 |
+
# Counting TFs, DFs, doc_lengths, etc.:
|
201 |
+
counting = run_counting(
|
202 |
+
documents=documents,
|
203 |
+
tokenize_fn=BM25Index.tokenize,
|
204 |
+
store_raw=store_raw,
|
205 |
+
ndocs=ndocs,
|
206 |
+
show_progress_bar=show_progress_bar,
|
207 |
+
)
|
208 |
+
|
209 |
+
# Compute term weights and caching:
|
210 |
+
posting_lists = counting.posting_lists
|
211 |
+
total_docs = len(counting.cid2docid)
|
212 |
+
BM25Index.cache_term_weights(
|
213 |
+
posting_lists=posting_lists,
|
214 |
+
total_docs=total_docs,
|
215 |
+
avgdl=counting.avgdl,
|
216 |
+
dfs=counting.dfs,
|
217 |
+
dls=counting.dls,
|
218 |
+
k1=k1,
|
219 |
+
b=b,
|
220 |
+
)
|
221 |
+
|
222 |
+
# Assembly and save:
|
223 |
+
index = BM25Index(
|
224 |
+
posting_lists=posting_lists,
|
225 |
+
vocab=counting.vocab,
|
226 |
+
cid2docid=counting.cid2docid,
|
227 |
+
collection_ids=counting.collection_ids,
|
228 |
+
doc_texts=counting.doc_texts,
|
229 |
+
)
|
230 |
+
return index
|
231 |
+
|
232 |
+
bm25_index = BM25Index.build_from_documents(
|
233 |
+
documents=iter(sciq.corpus),
|
234 |
+
ndocs=12160,
|
235 |
+
show_progress_bar=True,
|
236 |
+
)
|
237 |
+
bm25_index.save("output/bm25_index")
|
238 |
+
|
239 |
+
from nlp4web_codebase.ir.models import BaseRetriever
|
240 |
+
from typing import Type
|
241 |
+
from abc import abstractmethod
|
242 |
+
|
243 |
+
class BaseInvertedIndexRetriever(BaseRetriever):
|
244 |
+
|
245 |
+
@property
|
246 |
+
@abstractmethod
|
247 |
+
def index_class(self) -> Type[InvertedIndex]:
|
248 |
+
pass
|
249 |
+
|
250 |
+
def __init__(self, index_dir: str) -> None:
|
251 |
+
self.index = self.index_class.from_saved(index_dir)
|
252 |
+
|
253 |
+
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
|
254 |
+
toks = self.index.tokenize(query)
|
255 |
+
target_docid = self.index.cid2docid[cid]
|
256 |
+
term_weights = {}
|
257 |
+
for tok in toks:
|
258 |
+
if tok not in self.index.vocab:
|
259 |
+
continue
|
260 |
+
tid = self.index.vocab[tok]
|
261 |
+
posting_list = self.index.posting_lists[tid]
|
262 |
+
for docid, tweight in zip(
|
263 |
+
posting_list.docid_postings, posting_list.tweight_postings
|
264 |
+
):
|
265 |
+
if docid == target_docid:
|
266 |
+
term_weights[tok] = tweight
|
267 |
+
break
|
268 |
+
return term_weights
|
269 |
+
|
270 |
+
def score(self, query: str, cid: str) -> float:
|
271 |
+
return sum(self.get_term_weights(query=query, cid=cid).values())
|
272 |
+
|
273 |
+
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
|
274 |
+
toks = self.index.tokenize(query)
|
275 |
+
docid2score: Dict[int, float] = {}
|
276 |
+
for tok in toks:
|
277 |
+
if tok not in self.index.vocab:
|
278 |
+
continue
|
279 |
+
tid = self.index.vocab[tok]
|
280 |
+
posting_list = self.index.posting_lists[tid]
|
281 |
+
for docid, tweight in zip(
|
282 |
+
posting_list.docid_postings, posting_list.tweight_postings
|
283 |
+
):
|
284 |
+
docid2score.setdefault(docid, 0)
|
285 |
+
docid2score[docid] += tweight
|
286 |
+
docid2score = dict(
|
287 |
+
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
|
288 |
+
)
|
289 |
+
return {
|
290 |
+
self.index.collection_ids[docid]: score
|
291 |
+
for docid, score in docid2score.items()
|
292 |
+
}
|
293 |
+
|
294 |
+
class BM25Retriever(BaseInvertedIndexRetriever):
|
295 |
+
|
296 |
+
@property
|
297 |
+
def index_class(self) -> Type[BM25Index]:
|
298 |
+
return BM25Index
|
299 |
+
|
300 |
+
from nlp4web_codebase.ir.data_loaders import Split
|
301 |
+
import pytrec_eval
|
302 |
+
import numpy as np
|
303 |
+
|
304 |
+
def evaluate_map(rankings: Dict[str, Dict[str, float]], split=Split.dev) -> float:
|
305 |
+
metric = "map_cut_10"
|
306 |
+
qrels = sciq.get_qrels_dict(split)
|
307 |
+
evaluator = pytrec_eval.RelevanceEvaluator(sciq.get_qrels_dict(split), (metric,))
|
308 |
+
qps = evaluator.evaluate(rankings)
|
309 |
+
return float(np.mean([qp[metric] for qp in qps.values()]))
|
310 |
+
|
311 |
+
# Loading dataset:
|
312 |
+
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
313 |
+
sciq = load_sciq()
|
314 |
+
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
|
315 |
+
|
316 |
+
# Building BM25 index and save:
|
317 |
+
bm25_index = BM25Index.build_from_documents(
|
318 |
+
documents=iter(sciq.corpus),
|
319 |
+
ndocs=12160,
|
320 |
+
show_progress_bar=True
|
321 |
+
)
|
322 |
+
bm25_index.save("output/bm25_index")
|
323 |
+
|
324 |
+
|
325 |
+
plots_b: Dict[str, List[float]] = {
|
326 |
+
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
|
327 |
+
"Y": []
|
328 |
+
}
|
329 |
+
plots_k1: Dict[str, List[float]] = {
|
330 |
+
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
|
331 |
+
"Y": []
|
332 |
+
}
|
333 |
+
|
334 |
+
## YOUR_CODE_STARTS_HERE
|
335 |
+
# Two steps should be involved:
|
336 |
+
# Step 1. Fix k1 value to the default one 0.9,
|
337 |
+
# go through all the candidate b values (0, 0.1, ..., 1.0),
|
338 |
+
# and record in plots_b["Y"] the corresponding performances obtained via evaluate_map;
|
339 |
+
# Step 2. Fix b to the best one in step 1. and do the same for k1.
|
340 |
+
|
341 |
+
sciq_dataset = load_sciq()
|
342 |
+
dev_queries = sciq.get_split_queries(Split.dev)
|
343 |
+
dev_qrels = sciq.get_qrels_dict(Split.dev)
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
def evaluate_bm25(k1, b):
|
348 |
+
bm25_index = BM25Index.build_from_documents(
|
349 |
+
documents=iter(sciq_dataset.corpus),
|
350 |
+
ndocs=len(sciq_dataset.corpus),
|
351 |
+
show_progress_bar=True,
|
352 |
+
k1=k1,
|
353 |
+
b=b
|
354 |
+
)
|
355 |
+
bm25_index.save("output/bm25_index_task1")
|
356 |
+
|
357 |
+
# Initialize BM25Retriever with specified k1 and b values
|
358 |
+
bm25_retriever = BM25Retriever(index_dir="output/bm25_index_task1")
|
359 |
+
|
360 |
+
# Dictionary to store rankings for each query
|
361 |
+
rankings = {}
|
362 |
+
|
363 |
+
|
364 |
+
for query in dev_queries:
|
365 |
+
# print(query.text)
|
366 |
+
query_text = query.text
|
367 |
+
query_id = query.query_id
|
368 |
+
|
369 |
+
# Get top-ranked documents for the query
|
370 |
+
top_documents = bm25_retriever.retrieve(query_text, topk=10)
|
371 |
+
rankings[query_id] = top_documents # Store in the format expected by evaluate_map
|
372 |
+
|
373 |
+
# Evaluate MAP@10 on the dev split
|
374 |
+
return evaluate_map(rankings, split=Split.dev)
|
375 |
+
|
376 |
+
for b in plots_b["X"]:
|
377 |
+
plots_b["Y"].append(evaluate_bm25(k1=0.9, b=b))
|
378 |
+
|
379 |
+
# Find the best value of `b`
|
380 |
+
best_b = plots_b["X"][np.argmax(plots_b["Y"])]
|
381 |
+
|
382 |
+
for k1 in plots_k1["X"]:
|
383 |
+
plots_k1["Y"].append(evaluate_bm25(k1=k1, b=best_b))
|
384 |
+
|
385 |
+
# Find the best value of `b`
|
386 |
+
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])]
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
# Hint (on using the pre-requisite code):
|
391 |
+
# - One can use the loaded sciq dataset directly (loaded in the pre-requisite code);
|
392 |
+
# - One can build bm25_index with `BM25Index.build_from_documents`;
|
393 |
+
# - One can use BM25Retriever to load the index and perform retrieval on the dev queries
|
394 |
+
# (dev queries can be obtained via sciq.get_split_queries(Split.dev))
|
395 |
+
## YOUR_CODE_ENDS_HERE
|
396 |
+
|
397 |
+
from scipy.sparse._csc import csc_matrix
|
398 |
+
|
399 |
+
@dataclass
|
400 |
+
class CSCInvertedIndex:
|
401 |
+
posting_lists_matrix: csc_matrix # docid -> posting_list
|
402 |
+
vocab: Dict[str, int]
|
403 |
+
cid2docid: Dict[str, int] # collection_id -> docid
|
404 |
+
collection_ids: List[str] # docid -> collection_id
|
405 |
+
doc_texts: Optional[List[str]] = None # docid -> document text
|
406 |
+
|
407 |
+
def save(self, output_dir: str) -> None:
|
408 |
+
os.makedirs(output_dir, exist_ok=True)
|
409 |
+
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
|
410 |
+
pickle.dump(self, f)
|
411 |
+
|
412 |
+
@classmethod
|
413 |
+
def from_saved(cls: Type[T], saved_dir: str) -> T:
|
414 |
+
index = cls(
|
415 |
+
posting_lists_matrix=None, vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
|
416 |
+
)
|
417 |
+
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
|
418 |
+
index = pickle.load(f)
|
419 |
+
return index
|
420 |
+
|
421 |
+
|
422 |
+
@dataclass
|
423 |
+
class CSCBM25Index(CSCInvertedIndex):
|
424 |
+
|
425 |
+
@staticmethod
|
426 |
+
def tokenize(text: str) -> List[str]:
|
427 |
+
return simple_tokenize(text)
|
428 |
+
|
429 |
+
@staticmethod
|
430 |
+
def cache_term_weights(
|
431 |
+
posting_lists: List[PostingList],
|
432 |
+
total_docs: int,
|
433 |
+
avgdl: float,
|
434 |
+
dfs: List[int],
|
435 |
+
dls: List[int],
|
436 |
+
k1: float,
|
437 |
+
b: float,
|
438 |
+
) -> csc_matrix:
|
439 |
+
"""Compute term weights and caching"""
|
440 |
+
|
441 |
+
## YOUR_CODE_STARTS_HERE
|
442 |
+
data = [] # Holds the term weights
|
443 |
+
indices = [] # Document IDs
|
444 |
+
indptr = [0] # Term IDs
|
445 |
+
|
446 |
+
N = total_docs
|
447 |
+
for tid, posting_list in enumerate(
|
448 |
+
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
|
449 |
+
):
|
450 |
+
idf = CSCBM25Index.calc_idf(df=dfs[tid], N=N)
|
451 |
+
for i in range(len(posting_list.docid_postings)):
|
452 |
+
docid = posting_list.docid_postings[i]
|
453 |
+
tf = posting_list.tweight_postings[i]
|
454 |
+
dl = dls[docid]
|
455 |
+
regularized_tf = CSCBM25Index.calc_regularized_tf(
|
456 |
+
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
|
457 |
+
)
|
458 |
+
term_weight = regularized_tf * idf
|
459 |
+
|
460 |
+
# Append to lists for sparse matrix
|
461 |
+
data.append(term_weight)
|
462 |
+
indices.append(docid)
|
463 |
+
indptr.append(len(data))
|
464 |
+
|
465 |
+
# Create a CSC matrix where rows are documents, columns are terms
|
466 |
+
term_weights_matrix = csc_matrix((data, indices, indptr), shape=(total_docs, len(posting_lists)), dtype=np.float32)
|
467 |
+
print("INDPTR HERE")
|
468 |
+
|
469 |
+
return term_weights_matrix
|
470 |
+
## YOUR_CODE_ENDS_HERE
|
471 |
+
|
472 |
+
@staticmethod
|
473 |
+
def calc_regularized_tf(
|
474 |
+
tf: int, dl: float, avgdl: float, k1: float, b: float
|
475 |
+
) -> float:
|
476 |
+
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
|
477 |
+
|
478 |
+
@staticmethod
|
479 |
+
def calc_idf(df: int, N: int):
|
480 |
+
return math.log(1 + (N - df + 0.5) / (df + 0.5))
|
481 |
+
|
482 |
+
@classmethod
|
483 |
+
def build_from_documents(
|
484 |
+
cls: Type[CSCBM25Index],
|
485 |
+
documents: Iterable[Document],
|
486 |
+
store_raw: bool = True,
|
487 |
+
output_dir: Optional[str] = None,
|
488 |
+
ndocs: Optional[int] = None,
|
489 |
+
show_progress_bar: bool = True,
|
490 |
+
k1: float = 0.9,
|
491 |
+
b: float = 0.4,
|
492 |
+
) -> CSCBM25Index:
|
493 |
+
# Counting TFs, DFs, doc_lengths, etc.:
|
494 |
+
counting = run_counting(
|
495 |
+
documents=documents,
|
496 |
+
tokenize_fn=CSCBM25Index.tokenize,
|
497 |
+
store_raw=store_raw,
|
498 |
+
ndocs=ndocs,
|
499 |
+
show_progress_bar=show_progress_bar,
|
500 |
+
)
|
501 |
+
|
502 |
+
# Compute term weights and caching:
|
503 |
+
posting_lists = counting.posting_lists
|
504 |
+
total_docs = len(counting.cid2docid)
|
505 |
+
posting_lists_matrix = CSCBM25Index.cache_term_weights(
|
506 |
+
posting_lists=posting_lists,
|
507 |
+
total_docs=total_docs,
|
508 |
+
avgdl=counting.avgdl,
|
509 |
+
dfs=counting.dfs,
|
510 |
+
dls=counting.dls,
|
511 |
+
k1=k1,
|
512 |
+
b=b,
|
513 |
+
)
|
514 |
+
|
515 |
+
# Assembly and save:
|
516 |
+
index = CSCBM25Index(
|
517 |
+
posting_lists_matrix=posting_lists_matrix,
|
518 |
+
vocab=counting.vocab,
|
519 |
+
cid2docid=counting.cid2docid,
|
520 |
+
collection_ids=counting.collection_ids,
|
521 |
+
doc_texts=counting.doc_texts,
|
522 |
+
)
|
523 |
+
return index
|
524 |
+
|
525 |
+
csc_bm25_index = CSCBM25Index.build_from_documents(
|
526 |
+
documents=iter(sciq.corpus),
|
527 |
+
ndocs=12160,
|
528 |
+
show_progress_bar=True,
|
529 |
+
k1=best_k1,
|
530 |
+
b=best_b
|
531 |
+
)
|
532 |
+
csc_bm25_index.save("output/csc_bm25_index")
|
533 |
+
|
534 |
+
class BaseCSCInvertedIndexRetriever(BaseRetriever):
|
535 |
+
|
536 |
+
@property
|
537 |
+
@abstractmethod
|
538 |
+
def index_class(self) -> Type[CSCInvertedIndex]:
|
539 |
+
pass
|
540 |
+
|
541 |
+
def __init__(self, index_dir: str) -> None:
|
542 |
+
self.index = self.index_class.from_saved(index_dir)
|
543 |
+
|
544 |
+
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
|
545 |
+
## YOUR_CODE_STARTS_HERE
|
546 |
+
toks = self.index.tokenize(query)
|
547 |
+
target_docid = self.index.cid2docid[cid]
|
548 |
+
term_weights = {}
|
549 |
+
for tok in toks:
|
550 |
+
if tok not in self.index.vocab:
|
551 |
+
continue
|
552 |
+
tid = self.index.vocab[tok]
|
553 |
+
posting_list = self.index.posting_lists_matrix.getcol(tid)
|
554 |
+
doc_ids = posting_list.indices
|
555 |
+
tweights = posting_list.data
|
556 |
+
for docid, tweight in zip(
|
557 |
+
doc_ids, tweights
|
558 |
+
):
|
559 |
+
if docid == target_docid:
|
560 |
+
term_weights[tok] = tweight
|
561 |
+
break
|
562 |
+
return term_weights
|
563 |
+
## YOUR_CODE_ENDS_HERE
|
564 |
+
|
565 |
+
def score(self, query: str, cid: str) -> float:
|
566 |
+
return sum(self.get_term_weights(query=query, cid=cid).values())
|
567 |
+
|
568 |
+
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
|
569 |
+
## YOUR_CODE_STARTS_HERE
|
570 |
+
toks = self.index.tokenize(query)
|
571 |
+
docid2score: Dict[int, float] = {}
|
572 |
+
for tok in toks:
|
573 |
+
if tok not in self.index.vocab:
|
574 |
+
continue
|
575 |
+
tid = self.index.vocab[tok]
|
576 |
+
posting_list = self.index.posting_lists_matrix.getcol(tid)
|
577 |
+
doc_ids = posting_list.indices
|
578 |
+
tweights = posting_list.data
|
579 |
+
for docid, tweight in zip(
|
580 |
+
doc_ids, tweights
|
581 |
+
):
|
582 |
+
docid2score.setdefault(docid, 0)
|
583 |
+
docid2score[docid] += tweight
|
584 |
+
docid2score = dict(
|
585 |
+
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
|
586 |
+
)
|
587 |
+
return {
|
588 |
+
self.index.collection_ids[docid]: score
|
589 |
+
for docid, score in docid2score.items()
|
590 |
+
}
|
591 |
+
## YOUR_CODE_ENDS_HERE
|
592 |
+
|
593 |
+
class CSCBM25Retriever(BaseCSCInvertedIndexRetriever):
|
594 |
+
|
595 |
+
@property
|
596 |
+
def index_class(self) -> Type[CSCBM25Index]:
|
597 |
+
return CSCBM25Index
|
598 |
+
|
599 |
import gradio as gr
|
600 |
+
from typing import TypedDict
|
601 |
+
|
602 |
+
class Hit(TypedDict):
|
603 |
+
cid: str
|
604 |
+
score: float
|
605 |
+
text: str
|
606 |
+
|
607 |
+
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
|
608 |
+
return_type = List[Hit]
|
609 |
+
|
610 |
+
## YOUR_CODE_STARTS_HERE
|
611 |
+
# Building BM25 index and save:
|
612 |
+
bm25_index = BM25Index.build_from_documents(
|
613 |
+
documents=iter(sciq.corpus),
|
614 |
+
ndocs=12160,
|
615 |
+
show_progress_bar=True
|
616 |
+
)
|
617 |
+
bm25_index.save("output/bm25_index_app")
|
618 |
+
|
619 |
+
# Loading index and use BM25 retriever to retrieve:
|
620 |
+
bm25_retriever = BM25Retriever(index_dir="output/bm25_index_app")
|
621 |
+
|
622 |
+
# print(bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?")) # the ranking
|
623 |
+
def search(query: str) -> List[Hit]:
|
624 |
+
|
625 |
+
response = bm25_retriever.retrieve(query)
|
626 |
+
hits = []
|
627 |
+
for cid, score in response.items():
|
628 |
+
docid = bm25_index.cid2docid[cid]
|
629 |
+
hits.append(Hit(cid=cid, score=score, text=sciq.corpus[docid]))
|
630 |
+
return hits
|
631 |
|
|
|
|
|
632 |
|
633 |
+
# Create the Gradio interface
|
634 |
+
demo = gr.Interface(
|
635 |
+
fn=search, # Function to call on submit
|
636 |
+
inputs=gr.Textbox(label="Enter your query"), # Input field with label
|
637 |
+
outputs=gr.Textbox(label="RESULT HERE"), # Output field to display result
|
638 |
+
live=False # Disable real-time updates to require a button click
|
639 |
+
)
|
640 |
+
## YOUR_CODE_ENDS_HERE
|
641 |
+
demo.launch(share=True)
|
nlp4web-codebase-main/nlp4web_codebase/__init__.py
ADDED
File without changes
|
nlp4web-codebase-main/nlp4web_codebase/ir/__init__.py
ADDED
File without changes
|
nlp4web-codebase-main/nlp4web_codebase/ir/analysis.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List, Optional, Protocol
|
3 |
+
import pandas as pd
|
4 |
+
import tqdm
|
5 |
+
import ujson
|
6 |
+
from nlp4web_codebase.ir.data_loaders import IRDataset
|
7 |
+
|
8 |
+
|
9 |
+
def round_dict(obj: Dict[str, float], ndigits: int = 4) -> Dict[str, float]:
|
10 |
+
return {k: round(v, ndigits=ndigits) for k, v in obj.items()}
|
11 |
+
|
12 |
+
|
13 |
+
def sort_dict(obj: Dict[str, float], reverse: bool = True) -> Dict[str, float]:
|
14 |
+
return dict(sorted(obj.items(), key=lambda pair: pair[1], reverse=reverse))
|
15 |
+
|
16 |
+
|
17 |
+
def save_ranking_results(
|
18 |
+
output_dir: str,
|
19 |
+
query_ids: List[str],
|
20 |
+
rankings: List[Dict[str, float]],
|
21 |
+
query_performances_lists: List[Dict[str, float]],
|
22 |
+
cid2tweights_lists: Optional[List[Dict[str, Dict[str, float]]]] = None,
|
23 |
+
):
|
24 |
+
os.makedirs(output_dir, exist_ok=True)
|
25 |
+
output_path = os.path.join(output_dir, "ranking_results.jsonl")
|
26 |
+
rows = []
|
27 |
+
for i, (query_id, ranking, query_performances) in enumerate(
|
28 |
+
zip(query_ids, rankings, query_performances_lists)
|
29 |
+
):
|
30 |
+
row = {
|
31 |
+
"query_id": query_id,
|
32 |
+
"ranking": round_dict(ranking),
|
33 |
+
"query_performances": round_dict(query_performances),
|
34 |
+
"cid2tweights": {},
|
35 |
+
}
|
36 |
+
if cid2tweights_lists is not None:
|
37 |
+
row["cid2tweights"] = {
|
38 |
+
cid: round_dict(tws) for cid, tws in cid2tweights_lists[i].items()
|
39 |
+
}
|
40 |
+
rows.append(row)
|
41 |
+
pd.DataFrame(rows).to_json(
|
42 |
+
output_path,
|
43 |
+
orient="records",
|
44 |
+
lines=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
class TermWeightingFunction(Protocol):
|
49 |
+
def __call__(self, query: str, cid: str) -> Dict[str, float]: ...
|
50 |
+
|
51 |
+
|
52 |
+
def compare(
|
53 |
+
dataset: IRDataset,
|
54 |
+
results_path1: str,
|
55 |
+
results_path2: str,
|
56 |
+
output_dir: str,
|
57 |
+
main_metric: str = "recip_rank",
|
58 |
+
system1: Optional[str] = None,
|
59 |
+
system2: Optional[str] = None,
|
60 |
+
term_weighting_fn1: Optional[TermWeightingFunction] = None,
|
61 |
+
term_weighting_fn2: Optional[TermWeightingFunction] = None,
|
62 |
+
) -> None:
|
63 |
+
os.makedirs(output_dir, exist_ok=True)
|
64 |
+
df1 = pd.read_json(results_path1, orient="records", lines=True)
|
65 |
+
df2 = pd.read_json(results_path2, orient="records", lines=True)
|
66 |
+
assert len(df1) == len(df2)
|
67 |
+
all_qrels = {}
|
68 |
+
for split in dataset.split2qrels:
|
69 |
+
all_qrels.update(dataset.get_qrels_dict(split))
|
70 |
+
qid2query = {query.query_id: query for query in dataset.queries}
|
71 |
+
cid2doc = {doc.collection_id: doc for doc in dataset.corpus}
|
72 |
+
diff_col = f"{main_metric}:qp1-qp2"
|
73 |
+
merged = pd.merge(df1, df2, on="query_id", how="outer")
|
74 |
+
rows = []
|
75 |
+
for _, example in tqdm.tqdm(merged.iterrows(), desc="Comparing", total=len(merged)):
|
76 |
+
docs = {cid: cid2doc[cid].text for cid in dict(example["ranking_x"])}
|
77 |
+
docs.update({cid: cid2doc[cid].text for cid in dict(example["ranking_y"])})
|
78 |
+
query_id = example["query_id"]
|
79 |
+
row = {
|
80 |
+
"query_id": query_id,
|
81 |
+
"query": qid2query[query_id].text,
|
82 |
+
diff_col: example["query_performances_x"][main_metric]
|
83 |
+
- example["query_performances_y"][main_metric],
|
84 |
+
"ranking1": ujson.dumps(example["ranking_x"], indent=4),
|
85 |
+
"ranking2": ujson.dumps(example["ranking_y"], indent=4),
|
86 |
+
"docs": ujson.dumps(docs, indent=4),
|
87 |
+
"query_performances1": ujson.dumps(
|
88 |
+
example["query_performances_x"], indent=4
|
89 |
+
),
|
90 |
+
"query_performances2": ujson.dumps(
|
91 |
+
example["query_performances_y"], indent=4
|
92 |
+
),
|
93 |
+
"qrels": ujson.dumps(all_qrels[query_id], indent=4),
|
94 |
+
}
|
95 |
+
if term_weighting_fn1 is not None and term_weighting_fn2 is not None:
|
96 |
+
all_cids = set(example["ranking_x"]) | set(example["ranking_y"])
|
97 |
+
cid2tweights1 = {}
|
98 |
+
cid2tweights2 = {}
|
99 |
+
ranking1 = {}
|
100 |
+
ranking2 = {}
|
101 |
+
for cid in all_cids:
|
102 |
+
tweights1 = term_weighting_fn1(query=qid2query[query_id].text, cid=cid)
|
103 |
+
tweights2 = term_weighting_fn2(query=qid2query[query_id].text, cid=cid)
|
104 |
+
ranking1[cid] = sum(tweights1.values())
|
105 |
+
ranking2[cid] = sum(tweights2.values())
|
106 |
+
cid2tweights1[cid] = tweights1
|
107 |
+
cid2tweights2[cid] = tweights2
|
108 |
+
ranking1 = sort_dict(ranking1)
|
109 |
+
ranking2 = sort_dict(ranking2)
|
110 |
+
row["ranking1"] = ujson.dumps(ranking1, indent=4)
|
111 |
+
row["ranking2"] = ujson.dumps(ranking2, indent=4)
|
112 |
+
cid2tweights1 = {cid: cid2tweights1[cid] for cid in ranking1}
|
113 |
+
cid2tweights2 = {cid: cid2tweights2[cid] for cid in ranking2}
|
114 |
+
row["cid2tweights1"] = ujson.dumps(cid2tweights1, indent=4)
|
115 |
+
row["cid2tweights2"] = ujson.dumps(cid2tweights2, indent=4)
|
116 |
+
rows.append(row)
|
117 |
+
table = pd.DataFrame(rows).sort_values(by=diff_col, ascending=False)
|
118 |
+
output_path = os.path.join(output_dir, f"compare-{system1}_vs_{system2}.tsv")
|
119 |
+
table.to_csv(output_path, sep="\t", index=False)
|
120 |
+
|
121 |
+
|
122 |
+
# if __name__ == "__main__":
|
123 |
+
# # python -m lecture2.bm25.analysis
|
124 |
+
# from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
125 |
+
# from lecture2.bm25.bm25_retriever import BM25Retriever
|
126 |
+
# from lecture2.bm25.tfidf_retriever import TFIDFRetriever
|
127 |
+
# import numpy as np
|
128 |
+
|
129 |
+
# sciq = load_sciq()
|
130 |
+
# system1 = "bm25"
|
131 |
+
# system2 = "tfidf"
|
132 |
+
# results_path1 = f"output/sciq-{system1}/results/ranking_results.jsonl"
|
133 |
+
# results_path2 = f"output/sciq-{system2}/results/ranking_results.jsonl"
|
134 |
+
# index_dir1 = f"output/sciq-{system1}"
|
135 |
+
# index_dir2 = f"output/sciq-{system2}"
|
136 |
+
# compare(
|
137 |
+
# dataset=sciq,
|
138 |
+
# results_path1=results_path1,
|
139 |
+
# results_path2=results_path2,
|
140 |
+
# output_dir=f"output/sciq-{system1}_vs_{system2}",
|
141 |
+
# system1=system1,
|
142 |
+
# system2=system2,
|
143 |
+
# term_weighting_fn1=BM25Retriever(index_dir1).get_term_weights,
|
144 |
+
# term_weighting_fn2=TFIDFRetriever(index_dir2).get_term_weights,
|
145 |
+
# )
|
146 |
+
|
147 |
+
# # bias on #shared_terms of TFIDF:
|
148 |
+
# df1 = pd.read_json(results_path1, orient="records", lines=True)
|
149 |
+
# df2 = pd.read_json(results_path2, orient="records", lines=True)
|
150 |
+
# merged = pd.merge(df1, df2, on="query_id", how="outer")
|
151 |
+
# nterms1 = []
|
152 |
+
# nterms2 = []
|
153 |
+
# for _, row in merged.iterrows():
|
154 |
+
# nterms1.append(len(list(dict(row["cid2tweights_x"]).values())[0]))
|
155 |
+
# nterms2.append(len(list(dict(row["cid2tweights_y"]).values())[0]))
|
156 |
+
# percentiles = (5, 25, 50, 75, 95)
|
157 |
+
# print(system1, np.percentile(nterms1, percentiles), np.mean(nterms1).round(2))
|
158 |
+
# print(system2, np.percentile(nterms2, percentiles), np.mean(nterms2).round(2))
|
159 |
+
# # bm25 [ 3. 4. 5. 7. 11.] 5.64
|
160 |
+
# # tfidf [1. 2. 3. 5. 9.] 3.58
|
nlp4web-codebase-main/nlp4web_codebase/ir/data_loaders/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Dict, List
|
4 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document, Query, QRel
|
5 |
+
|
6 |
+
|
7 |
+
class Split(str, Enum):
|
8 |
+
train = "train"
|
9 |
+
dev = "dev"
|
10 |
+
test = "test"
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class IRDataset:
|
15 |
+
corpus: List[Document]
|
16 |
+
queries: List[Query]
|
17 |
+
split2qrels: Dict[Split, List[QRel]]
|
18 |
+
|
19 |
+
def get_stats(self) -> Dict[str, int]:
|
20 |
+
stats = {"|corpus|": len(self.corpus), "|queries|": len(self.queries)}
|
21 |
+
for split, qrels in self.split2qrels.items():
|
22 |
+
stats[f"|qrels-{split}|"] = len(qrels)
|
23 |
+
return stats
|
24 |
+
|
25 |
+
def get_qrels_dict(self, split: Split) -> Dict[str, Dict[str, int]]:
|
26 |
+
qrels_dict = {}
|
27 |
+
for qrel in self.split2qrels[split]:
|
28 |
+
qrels_dict.setdefault(qrel.query_id, {})
|
29 |
+
qrels_dict[qrel.query_id][qrel.collection_id] = qrel.relevance
|
30 |
+
return qrels_dict
|
31 |
+
|
32 |
+
def get_split_queries(self, split: Split) -> List[Query]:
|
33 |
+
qrels = self.split2qrels[split]
|
34 |
+
qids = {qrel.query_id for qrel in qrels}
|
35 |
+
return list(filter(lambda query: query.query_id in qids, self.queries))
|
nlp4web-codebase-main/nlp4web_codebase/ir/data_loaders/dm.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class Document:
|
7 |
+
collection_id: str
|
8 |
+
text: str
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class Query:
|
13 |
+
query_id: str
|
14 |
+
text: str
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class QRel:
|
19 |
+
query_id: str
|
20 |
+
collection_id: str
|
21 |
+
relevance: int
|
22 |
+
answer: Optional[str] = None
|
nlp4web-codebase-main/nlp4web_codebase/ir/data_loaders/sciq.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
from nlp4web_codebase.ir.data_loaders import IRDataset, Split
|
3 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document, Query, QRel
|
4 |
+
from datasets import load_dataset
|
5 |
+
import joblib
|
6 |
+
|
7 |
+
|
8 |
+
@(joblib.Memory(".cache").cache)
|
9 |
+
def load_sciq(verbose: bool = False) -> IRDataset:
|
10 |
+
train = load_dataset("allenai/sciq", split="train")
|
11 |
+
validation = load_dataset("allenai/sciq", split="validation")
|
12 |
+
test = load_dataset("allenai/sciq", split="test")
|
13 |
+
data = {Split.train: train, Split.dev: validation, Split.test: test}
|
14 |
+
|
15 |
+
# Each duplicated record is the same to each other:
|
16 |
+
df = train.to_pandas() + validation.to_pandas() + test.to_pandas()
|
17 |
+
for question, group in df.groupby("question"):
|
18 |
+
assert len(set(group["support"].tolist())) == len(group)
|
19 |
+
assert len(set(group["correct_answer"].tolist())) == len(group)
|
20 |
+
|
21 |
+
# Build:
|
22 |
+
corpus = []
|
23 |
+
queries = []
|
24 |
+
split2qrels: Dict[str, List[dict]] = {}
|
25 |
+
question2id = {}
|
26 |
+
support2id = {}
|
27 |
+
for split, rows in data.items():
|
28 |
+
if verbose:
|
29 |
+
print(f"|raw_{split}|", len(rows))
|
30 |
+
split2qrels[split] = []
|
31 |
+
for i, row in enumerate(rows):
|
32 |
+
example_id = f"{split}-{i}"
|
33 |
+
support: str = row["support"]
|
34 |
+
if len(support.strip()) == 0:
|
35 |
+
continue
|
36 |
+
question = row["question"]
|
37 |
+
if len(support.strip()) == 0:
|
38 |
+
continue
|
39 |
+
if support in support2id:
|
40 |
+
continue
|
41 |
+
else:
|
42 |
+
support2id[support] = example_id
|
43 |
+
if question in question2id:
|
44 |
+
continue
|
45 |
+
else:
|
46 |
+
question2id[question] = example_id
|
47 |
+
doc = {"collection_id": example_id, "text": support}
|
48 |
+
query = {"query_id": example_id, "text": row["question"]}
|
49 |
+
qrel = {
|
50 |
+
"query_id": example_id,
|
51 |
+
"collection_id": example_id,
|
52 |
+
"relevance": 1,
|
53 |
+
"answer": row["correct_answer"],
|
54 |
+
}
|
55 |
+
corpus.append(Document(**doc))
|
56 |
+
queries.append(Query(**query))
|
57 |
+
split2qrels[split].append(QRel(**qrel))
|
58 |
+
|
59 |
+
# Assembly and return:
|
60 |
+
return IRDataset(corpus=corpus, queries=queries, split2qrels=split2qrels)
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
# python -m nlp4web_codebase.ir.data_loaders.sciq
|
65 |
+
import ujson
|
66 |
+
import time
|
67 |
+
|
68 |
+
start = time.time()
|
69 |
+
dataset = load_sciq(verbose=True)
|
70 |
+
print(f"Loading costs: {time.time() - start}s")
|
71 |
+
print(ujson.dumps(dataset.get_stats(), indent=4))
|
72 |
+
# ________________________________________________________________________________
|
73 |
+
# [Memory] Calling __main__--home-kwang-research-nlp4web-ir-exercise-nlp4web-nlp4web-ir-data_loaders-sciq.load_sciq...
|
74 |
+
# load_sciq(verbose=True)
|
75 |
+
# |raw_train| 11679
|
76 |
+
# |raw_dev| 1000
|
77 |
+
# |raw_test| 1000
|
78 |
+
# ________________________________________________________load_sciq - 7.3s, 0.1min
|
79 |
+
# Loading costs: 7.260092735290527s
|
80 |
+
# {
|
81 |
+
# "|corpus|": 12160,
|
82 |
+
# "|queries|": 12160,
|
83 |
+
# "|qrels-train|": 10409,
|
84 |
+
# "|qrels-dev|": 875,
|
85 |
+
# "|qrels-test|": 876
|
86 |
+
# }
|
nlp4web-codebase-main/nlp4web_codebase/ir/models/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Any, Dict, Type
|
3 |
+
|
4 |
+
|
5 |
+
class BaseRetriever(ABC):
|
6 |
+
|
7 |
+
@property
|
8 |
+
@abstractmethod
|
9 |
+
def index_class(self) -> Type[Any]:
|
10 |
+
pass
|
11 |
+
|
12 |
+
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
|
13 |
+
raise NotImplementedError
|
14 |
+
|
15 |
+
@abstractmethod
|
16 |
+
def score(self, query: str, cid: str) -> float:
|
17 |
+
pass
|
18 |
+
|
19 |
+
@abstractmethod
|
20 |
+
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
|
21 |
+
pass
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
git+https://github.com/kwang2049/nlp4web-codebase.git
|
3 |
+
pytrec_eval
|
4 |
+
tqdm
|
5 |
+
nltk
|
6 |
+
scipy
|
7 |
+
numpy
|
8 |
+
datasets
|
9 |
+
joblib
|