Spaces:
Sleeping
Sleeping
lexrank1
Browse files- app.py +41 -0
- lexrank.py +39 -0
- metrics.py +60 -0
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import lexrank as lr
|
4 |
+
import nltk
|
5 |
+
import metrics
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
def summarize(in_text):
|
10 |
+
|
11 |
+
if len(in_text)==0:
|
12 |
+
return 'Error: No text provided', None
|
13 |
+
|
14 |
+
nltk_file = '/Users/hujo/nltk_data/tokenizers/punkt.zip'
|
15 |
+
#nltk_file = '/home/user/nltk_data/tokenizers/punkt.zip'
|
16 |
+
if os.path.exists(nltk_file):
|
17 |
+
print('nltk punkt file exists in ', nltk_file)
|
18 |
+
else:
|
19 |
+
nltk.download('punkt')
|
20 |
+
|
21 |
+
out_text = lr.get_Summary(in_text)
|
22 |
+
n_words = metrics.num_words(out_text)
|
23 |
+
n_sents = metrics.num_sentences(out_text)
|
24 |
+
n_chars = metrics.num_chars(out_text)
|
25 |
+
n_tokens= metrics.num_tokens(out_text)
|
26 |
+
|
27 |
+
return out_text, n_words, n_sents, n_chars, n_tokens
|
28 |
+
|
29 |
+
|
30 |
+
demo = gr.Interface(summarize,
|
31 |
+
inputs=["text"] ,
|
32 |
+
outputs=[gr.Textbox(label="Extractive Summary"),
|
33 |
+
gr.Number(label="Number of Words"),
|
34 |
+
gr.Number(label="Number of Sentences"),
|
35 |
+
gr.Number(label="Number of Characters"),
|
36 |
+
gr.Number(label="Number of Tokens")],
|
37 |
+
allow_flagging="never")
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
demo.launch()
|
lexrank.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import nltk
|
2 |
+
#nltk.download('punkt')
|
3 |
+
|
4 |
+
from sumy.parsers.html import HtmlParser
|
5 |
+
from sumy.parsers.plaintext import PlaintextParser
|
6 |
+
from sumy.nlp.tokenizers import Tokenizer
|
7 |
+
from sumy.summarizers.lex_rank import LexRankSummarizer
|
8 |
+
from sumy.nlp.stemmers import Stemmer
|
9 |
+
from sumy.utils import get_stop_words
|
10 |
+
|
11 |
+
def get_Summary(in_text):
|
12 |
+
|
13 |
+
sentences = in_text.split('. ')
|
14 |
+
# summarize small part of the text
|
15 |
+
nr_sentences = 3 #len(sentences)
|
16 |
+
print('nr_sentences: '+str(nr_sentences))
|
17 |
+
|
18 |
+
if nr_sentences == 0:
|
19 |
+
return 'Error: No sentences available', None
|
20 |
+
list_summary = get_Lexrank(in_text,nr_sentences)
|
21 |
+
# it can happen that for lexrank a sentence consists of multiple actual sentences,
|
22 |
+
# that are separated with full stops. Then the correspoinding timestamp cannot be found
|
23 |
+
# all items from the lexrank summary must be concatinated and split up by full stops.
|
24 |
+
concat_list_summary = '. '.join([str(item).replace('.','') for item in list_summary])#.split('. ')
|
25 |
+
|
26 |
+
return concat_list_summary
|
27 |
+
|
28 |
+
def get_Lexrank(text, nr_sentences):
|
29 |
+
summary=[]
|
30 |
+
LANGUAGE = "english"
|
31 |
+
SENTENCES_COUNT = nr_sentences
|
32 |
+
parser = PlaintextParser.from_string(text, Tokenizer(LANGUAGE))
|
33 |
+
stemmer = Stemmer(LANGUAGE)
|
34 |
+
summarizer = LexRankSummarizer(stemmer)
|
35 |
+
summarizer.stop_words = get_stop_words(LANGUAGE)
|
36 |
+
for sentence in summarizer(parser.document, SENTENCES_COUNT):
|
37 |
+
summary.append(sentence)
|
38 |
+
|
39 |
+
return summary
|
metrics.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import nltk library for natural language processing
|
2 |
+
import nltk
|
3 |
+
|
4 |
+
|
5 |
+
# Define a function that takes some text as input and returns the number of tokens
|
6 |
+
def token_count(text):
|
7 |
+
# Import the Encoder class from bpe
|
8 |
+
from bpe import Encoder
|
9 |
+
# Create an encoder object with a vocabulary size of 10
|
10 |
+
encoder = Encoder(vocab_size=14735746)
|
11 |
+
|
12 |
+
# Train the encoder on the text
|
13 |
+
encoder.fit(text.split())
|
14 |
+
|
15 |
+
# Encode the text into tokens
|
16 |
+
tokens = encoder.tokenize(text)
|
17 |
+
|
18 |
+
# Return the number of tokens
|
19 |
+
return tokens
|
20 |
+
|
21 |
+
def num_tokens(text):
|
22 |
+
from transformers import AutoTokenizer
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
25 |
+
|
26 |
+
token_ids = tokenizer.encode(text)
|
27 |
+
|
28 |
+
token_size = len(token_ids)
|
29 |
+
|
30 |
+
return token_size
|
31 |
+
|
32 |
+
def num_words(text):
|
33 |
+
sentences = nltk.sent_tokenize(text)
|
34 |
+
# Tokenize each sentence into words using nltk.word_tokenize()
|
35 |
+
words = []
|
36 |
+
for sentence in sentences:
|
37 |
+
words.extend(nltk.word_tokenize(sentence))
|
38 |
+
|
39 |
+
num_words = len(words)
|
40 |
+
|
41 |
+
return num_words
|
42 |
+
|
43 |
+
def num_sentences(text):
|
44 |
+
# Tokenize the text into sentences using nltk.sent_tokenize()
|
45 |
+
sentences = nltk.sent_tokenize(text)
|
46 |
+
num_sentences = len(sentences)
|
47 |
+
return num_sentences
|
48 |
+
|
49 |
+
|
50 |
+
def num_chars(text):
|
51 |
+
num_characters = len(text)
|
52 |
+
return num_characters
|
53 |
+
|
54 |
+
|
55 |
+
# Print out the results
|
56 |
+
# print(f"Number of sentences: {num_sentences}")
|
57 |
+
# print(f"Number of words: {num_words}")
|
58 |
+
# print(f"Number of tokens: {num_tokens}")
|
59 |
+
# print(f"Number of trans_tokens: {trans_tokens}")
|
60 |
+
# print(f"Number of characters: {num_characters}")
|