2233 / basic_knowledgebase.py
wjt6's picture
Upload 17 files
f5e247b verified
from langchain.agents import initialize_agent, AgentType, Tool
from langchain.memory import ConversationBufferMemory
from langchain_deepseek import ChatDeepSeek
from langchain_openai import ChatOpenAI
from langchain.document_loaders import TextLoader
from langchain_community.document_loaders import PyPDFLoader # Updated import for PDF loading
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from dotenv import load_dotenv
import os
load_dotenv()
llm = ChatDeepSeek(api_key=os.getenv("DEEPSEEK_API_KEY"), model="deepseek-chat")
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
def doc_tool(query: str) -> str:
"""Search the knowledge base for an answer to the question in Chinese."""
docs = TextLoader("brainrent_part1.txt", encoding="utf-8").load()
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = splitter.split_documents(docs)
qa_chain = load_qa_chain(llm=llm, chain_type="stuff")
return qa_chain.run(input_documents=chunks, question=query)
tools = [
Tool(
name="KnowledgeBase",
func=doc_tool,
description="Useful for answering questions about Brainrent."
),
]
# 4. Initialize the agent with tools and memory
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
memory=memory,
verbose=True
)
if __name__ == "__main__":
while True:
query = input("\nEnter your question (or 'exit' to quit): ")
if query.lower() == 'exit':
break
result = agent.invoke(query)
print(f"Result: {result['output']}")