Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import spaces | |
# Load the model and tokenizer | |
model_name = "Qwen/Qwen2-72B-Instruct" | |
# Load model (without moving to GPU yet) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
def generate_text(prompt): | |
# Move model to GPU when function is called | |
model.to('cuda') | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to('cuda') | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
temperature=0.7, | |
max_new_tokens=500, | |
do_sample=True, | |
top_p=0.95 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Move model back to CPU to free up GPU resources | |
model.to('cpu') | |
return response | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=5, label="Input Prompt"), | |
outputs=gr.Textbox(label="Generated Text"), | |
title="Qwen Text Generator (Spaces GPU)", | |
description="Enter a prompt to generate text using the Qwen model. This Space uses Spaces GPU for efficient GPU usage." | |
) | |
# Launch the app | |
iface.launch() |