Spaces:
Sleeping
Sleeping
wjbmattingly
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Dictionary of model names and their corresponding HuggingFace model IDs
|
7 |
+
MODEL_OPTIONS = {
|
8 |
+
"Microsoft Handwritten": "microsoft/trocr-base-handwritten",
|
9 |
+
"Medieval Base": "medieval-data/trocr-medieval-base",
|
10 |
+
"Medieval Latin Caroline": "medieval-data/trocr-medieval-latin-caroline",
|
11 |
+
"Medieval Castilian Hybrida": "medieval-data/trocr-medieval-castilian-hybrida",
|
12 |
+
"Medieval Humanistica": "medieval-data/trocr-medieval-humanistica",
|
13 |
+
"Medieval Textualis": "medieval-data/trocr-medieval-textualis",
|
14 |
+
"Medieval Cursiva": "medieval-data/trocr-medieval-cursiva",
|
15 |
+
"Medieval Semitextualis": "medieval-data/trocr-medieval-semitextualis",
|
16 |
+
"Medieval Praegothica": "medieval-data/trocr-medieval-praegothica",
|
17 |
+
"Medieval Semihybrida": "medieval-data/trocr-medieval-semihybrida",
|
18 |
+
"Medieval Print": "medieval-data/trocr-medieval-print"
|
19 |
+
}
|
20 |
+
|
21 |
+
# Load image examples
|
22 |
+
urls = [
|
23 |
+
'https://huggingface.co/medieval-data/trocr-medieval-base/blob/main/images/caroline-1.png'
|
24 |
+
]
|
25 |
+
|
26 |
+
for idx, url in enumerate(urls):
|
27 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
28 |
+
image.save(f"image_{idx}.png")
|
29 |
+
|
30 |
+
def load_model(model_name):
|
31 |
+
model_id = MODEL_OPTIONS[model_name]
|
32 |
+
processor = TrOCRProcessor.from_pretrained(model_id)
|
33 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
34 |
+
return processor, model
|
35 |
+
|
36 |
+
def process_image(image, model_name):
|
37 |
+
processor, model = load_model(model_name)
|
38 |
+
|
39 |
+
# prepare image
|
40 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
41 |
+
|
42 |
+
# generate (no beam search)
|
43 |
+
generated_ids = model.generate(pixel_values)
|
44 |
+
|
45 |
+
# decode
|
46 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
47 |
+
return generated_text
|
48 |
+
|
49 |
+
title = "Interactive demo: TrOCR Model Switcher"
|
50 |
+
description = "Demo for various TrOCR models, including Microsoft's handwritten model and several medieval models. To use it, simply upload a (single-text line) image or use one of the example images below, select a model, and click 'submit'. Results will show up in a few seconds."
|
51 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
|
52 |
+
|
53 |
+
examples = [
|
54 |
+
["https://huggingface.co/medieval-data/trocr-medieval-base/blob/main/images/caroline-1.png", "Caroline"]
|
55 |
+
]
|
56 |
+
|
57 |
+
iface = gr.Interface(
|
58 |
+
fn=process_image,
|
59 |
+
inputs=[
|
60 |
+
gr.inputs.Image(type="pil"),
|
61 |
+
gr.inputs.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model")
|
62 |
+
],
|
63 |
+
outputs=gr.outputs.Textbox(),
|
64 |
+
title=title,
|
65 |
+
description=description,
|
66 |
+
article=article,
|
67 |
+
examples=examples
|
68 |
+
)
|
69 |
+
|
70 |
+
iface.launch(debug=True)
|