fastapi-yoloe / app.py
wjm55
refactor init_model function to accept model_id parameter and update predict endpoint to use dynamic model initialization; added supervision library to requirements
1955b0a
from fastapi import FastAPI, UploadFile
from ultralytics import YOLOE
import io
from PIL import Image
import numpy as np
import os
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
import requests
import supervision as sv
###
#pip install -q "git+https://github.com/THU-MIG/yoloe.git#subdirectory=third_party/CLIP"
#pip install -q "git+https://github.com/THU-MIG/yoloe.git#subdirectory=third_party/ml-mobileclip"
#pip install -q "git+https://github.com/THU-MIG/yoloe.git#subdirectory=third_party/lvis-api"
#pip install -q "git+https://github.com/THU-MIG/yoloe.git"
#wget -q https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt
def init_model(model_id: str):
is_pf=True
# Create a models directory if it doesn't exist
os.makedirs("models", exist_ok=True)
filename = f"{model_id}-seg.pt" if not is_pf else f"{model_id}-seg-pf.pt"
path = hf_hub_download(repo_id="jameslahm/yoloe", filename=filename)
local_path = os.path.join("models", path)
# Download and load model
model = YOLOE(local_path)
model.eval()
return model
app = FastAPI()
@app.post("/predict")
async def predict(image_url: str,
texts: str = "hat",
model_id: str = "yoloe-11l",
conf: float = 0.25,
iou: float = 0.7
):
# Initialize model at startup
model = init_model(model_id)
# Set classes to filter
class_list = [text.strip() for text in texts.split(',')]
# Download and open image from URL
response = requests.get(image_url)
image = Image.open(io.BytesIO(response.content))
# Get text embeddings and set classes properly
text_embeddings = model.get_text_pe(class_list)
model.set_classes(class_list, text_embeddings)
# Run inference with the PIL Image
results = model.predict(source=image, conf=conf, iou=iou)
# Extract detection results
result = results[0]
# print(result)
detections = []
for box in result.boxes:
detection = {
"class": result.names[int(box.cls[0])],
"confidence": float(box.conf[0]),
"bbox": box.xyxy[0].tolist() # Convert bbox tensor to list
}
detections.append(detection)
print(detections)
# detections = sv.Detections.from_ultralytics(results[0])
# resolution_wh = image.size
# thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
# text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh)
# labels = [
# f"{class_name} {confidence:.2f}"
# for class_name, confidence
# in zip(detections['class_name'], detections.confidence)
# ]
# annotated_image = image.copy()
# annotated_image = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX, opacity=0.4).annotate(
# scene=annotated_image, detections=detections)
# annotated_image = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=thickness).annotate(
# scene=annotated_image, detections=detections)
# annotated_image = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX, text_scale=text_scale, smart_position=True).annotate(
# scene=annotated_image, detections=detections, labels=labels)
return {"detections": detections}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)