wizzseen's picture
Upload 948 files
8a6df40 verified
import os
import numpy as np
from PIL import Image
def main():
image_paths, label_paths = init_path()
hist = compute_hist(image_paths, label_paths)
show_result(hist)
def init_path():
list_file = './human/list/val_id.txt'
file_names = []
with open(list_file, 'rb') as f:
for fn in f:
file_names.append(fn.strip())
image_dir = './human/features/attention/val/results/'
label_dir = './human/data/labels/'
image_paths = []
label_paths = []
for file_name in file_names:
image_paths.append(os.path.join(image_dir, file_name + '.png'))
label_paths.append(os.path.join(label_dir, file_name + '.png'))
return image_paths, label_paths
def fast_hist(lbl, pred, n_cls):
'''
compute the miou
:param lbl: label
:param pred: output
:param n_cls: num of class
:return:
'''
# print(n_cls)
k = (lbl >= 0) & (lbl < n_cls)
return np.bincount(n_cls * lbl[k].astype(int) + pred[k], minlength=n_cls ** 2).reshape(n_cls, n_cls)
def compute_hist(images, labels,n_cls=20):
hist = np.zeros((n_cls, n_cls))
for img_path, label_path in zip(images, labels):
label = Image.open(label_path)
label_array = np.array(label, dtype=np.int32)
image = Image.open(img_path)
image_array = np.array(image, dtype=np.int32)
gtsz = label_array.shape
imgsz = image_array.shape
if not gtsz == imgsz:
image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS)
image_array = np.array(image, dtype=np.int32)
hist += fast_hist(label_array, image_array, n_cls)
return hist
def show_result(hist):
classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes',
'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt',
'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe',
'rightShoe']
# num of correct pixels
num_cor_pix = np.diag(hist)
# num of gt pixels
num_gt_pix = hist.sum(1)
print('=' * 50)
# @evaluation 1: overall accuracy
acc = num_cor_pix.sum() / hist.sum()
print('>>>', 'overall accuracy', acc)
print('-' * 50)
# @evaluation 2: mean accuracy & per-class accuracy
print('Accuracy for each class (pixel accuracy):')
for i in range(20):
print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i]))
acc = num_cor_pix / num_gt_pix
print('>>>', 'mean accuracy', np.nanmean(acc))
print('-' * 50)
# @evaluation 3: mean IU & per-class IU
union = num_gt_pix + hist.sum(0) - num_cor_pix
for i in range(20):
print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
print('>>>', 'mean IU', np.nanmean(iu))
print('-' * 50)
# @evaluation 4: frequency weighted IU
freq = num_gt_pix / hist.sum()
print('>>>', 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum())
print('=' * 50)
def get_iou(pred,lbl,n_cls):
'''
need tensor cpu
:param pred:
:param lbl:
:param n_cls:
:return:
'''
hist = np.zeros((n_cls,n_cls))
for i,j in zip(range(pred.size(0)),range(lbl.size(0))):
pred_item = pred[i].data.numpy()
lbl_item = lbl[j].data.numpy()
hist += fast_hist(lbl_item, pred_item, n_cls)
# num of correct pixels
num_cor_pix = np.diag(hist)
# num of gt pixels
num_gt_pix = hist.sum(1)
union = num_gt_pix + hist.sum(0) - num_cor_pix
# for i in range(20):
# print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
print('>>>', 'mean IU', np.nanmean(iu))
miou = np.nanmean(iu)
print('-' * 50)
return miou
def get_iou_from_list(pred,lbl,n_cls):
'''
need tensor cpu
:param pred: list
:param lbl: list
:param n_cls:
:return:
'''
hist = np.zeros((n_cls,n_cls))
for i,j in zip(range(len(pred)),range(len(lbl))):
pred_item = pred[i].data.numpy()
lbl_item = lbl[j].data.numpy()
# print(pred_item.shape,lbl_item.shape)
hist += fast_hist(lbl_item, pred_item, n_cls)
# num of correct pixels
num_cor_pix = np.diag(hist)
# num of gt pixels
num_gt_pix = hist.sum(1)
union = num_gt_pix + hist.sum(0) - num_cor_pix
# for i in range(20):
acc = num_cor_pix.sum() / hist.sum()
print('>>>', 'overall accuracy', acc)
print('-' * 50)
# print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
print('>>>', 'mean IU', np.nanmean(iu))
miou = np.nanmean(iu)
print('-' * 50)
acc = num_cor_pix / num_gt_pix
print('>>>', 'mean accuracy', np.nanmean(acc))
print('-' * 50)
return miou
if __name__ == '__main__':
import torch
pred = torch.autograd.Variable(torch.ones((2,1,32,32)).int())*20
pred2 = torch.autograd.Variable(torch.zeros((2,1, 32, 32)).int())
# lbl = [torch.zeros((32,32)).int() for _ in range(len(pred))]
get_iou(pred,pred2,7)