Spaces:
Running
Running
import os | |
import numpy as np | |
from PIL import Image | |
def main(): | |
image_paths, label_paths = init_path() | |
hist = compute_hist(image_paths, label_paths) | |
show_result(hist) | |
def init_path(): | |
list_file = './human/list/val_id.txt' | |
file_names = [] | |
with open(list_file, 'rb') as f: | |
for fn in f: | |
file_names.append(fn.strip()) | |
image_dir = './human/features/attention/val/results/' | |
label_dir = './human/data/labels/' | |
image_paths = [] | |
label_paths = [] | |
for file_name in file_names: | |
image_paths.append(os.path.join(image_dir, file_name + '.png')) | |
label_paths.append(os.path.join(label_dir, file_name + '.png')) | |
return image_paths, label_paths | |
def fast_hist(lbl, pred, n_cls): | |
''' | |
compute the miou | |
:param lbl: label | |
:param pred: output | |
:param n_cls: num of class | |
:return: | |
''' | |
# print(n_cls) | |
k = (lbl >= 0) & (lbl < n_cls) | |
return np.bincount(n_cls * lbl[k].astype(int) + pred[k], minlength=n_cls ** 2).reshape(n_cls, n_cls) | |
def compute_hist(images, labels,n_cls=20): | |
hist = np.zeros((n_cls, n_cls)) | |
for img_path, label_path in zip(images, labels): | |
label = Image.open(label_path) | |
label_array = np.array(label, dtype=np.int32) | |
image = Image.open(img_path) | |
image_array = np.array(image, dtype=np.int32) | |
gtsz = label_array.shape | |
imgsz = image_array.shape | |
if not gtsz == imgsz: | |
image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS) | |
image_array = np.array(image, dtype=np.int32) | |
hist += fast_hist(label_array, image_array, n_cls) | |
return hist | |
def show_result(hist): | |
classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes', | |
'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt', | |
'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe', | |
'rightShoe'] | |
# num of correct pixels | |
num_cor_pix = np.diag(hist) | |
# num of gt pixels | |
num_gt_pix = hist.sum(1) | |
print('=' * 50) | |
# @evaluation 1: overall accuracy | |
acc = num_cor_pix.sum() / hist.sum() | |
print('>>>', 'overall accuracy', acc) | |
print('-' * 50) | |
# @evaluation 2: mean accuracy & per-class accuracy | |
print('Accuracy for each class (pixel accuracy):') | |
for i in range(20): | |
print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i])) | |
acc = num_cor_pix / num_gt_pix | |
print('>>>', 'mean accuracy', np.nanmean(acc)) | |
print('-' * 50) | |
# @evaluation 3: mean IU & per-class IU | |
union = num_gt_pix + hist.sum(0) - num_cor_pix | |
for i in range(20): | |
print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) | |
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) | |
print('>>>', 'mean IU', np.nanmean(iu)) | |
print('-' * 50) | |
# @evaluation 4: frequency weighted IU | |
freq = num_gt_pix / hist.sum() | |
print('>>>', 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum()) | |
print('=' * 50) | |
def get_iou(pred,lbl,n_cls): | |
''' | |
need tensor cpu | |
:param pred: | |
:param lbl: | |
:param n_cls: | |
:return: | |
''' | |
hist = np.zeros((n_cls,n_cls)) | |
for i,j in zip(range(pred.size(0)),range(lbl.size(0))): | |
pred_item = pred[i].data.numpy() | |
lbl_item = lbl[j].data.numpy() | |
hist += fast_hist(lbl_item, pred_item, n_cls) | |
# num of correct pixels | |
num_cor_pix = np.diag(hist) | |
# num of gt pixels | |
num_gt_pix = hist.sum(1) | |
union = num_gt_pix + hist.sum(0) - num_cor_pix | |
# for i in range(20): | |
# print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) | |
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) | |
print('>>>', 'mean IU', np.nanmean(iu)) | |
miou = np.nanmean(iu) | |
print('-' * 50) | |
return miou | |
def get_iou_from_list(pred,lbl,n_cls): | |
''' | |
need tensor cpu | |
:param pred: list | |
:param lbl: list | |
:param n_cls: | |
:return: | |
''' | |
hist = np.zeros((n_cls,n_cls)) | |
for i,j in zip(range(len(pred)),range(len(lbl))): | |
pred_item = pred[i].data.numpy() | |
lbl_item = lbl[j].data.numpy() | |
# print(pred_item.shape,lbl_item.shape) | |
hist += fast_hist(lbl_item, pred_item, n_cls) | |
# num of correct pixels | |
num_cor_pix = np.diag(hist) | |
# num of gt pixels | |
num_gt_pix = hist.sum(1) | |
union = num_gt_pix + hist.sum(0) - num_cor_pix | |
# for i in range(20): | |
acc = num_cor_pix.sum() / hist.sum() | |
print('>>>', 'overall accuracy', acc) | |
print('-' * 50) | |
# print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) | |
iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) | |
print('>>>', 'mean IU', np.nanmean(iu)) | |
miou = np.nanmean(iu) | |
print('-' * 50) | |
acc = num_cor_pix / num_gt_pix | |
print('>>>', 'mean accuracy', np.nanmean(acc)) | |
print('-' * 50) | |
return miou | |
if __name__ == '__main__': | |
import torch | |
pred = torch.autograd.Variable(torch.ones((2,1,32,32)).int())*20 | |
pred2 = torch.autograd.Variable(torch.zeros((2,1, 32, 32)).int()) | |
# lbl = [torch.zeros((32,32)).int() for _ in range(len(pred))] | |
get_iou(pred,pred2,7) | |