|
import pandas as pd |
|
import subprocess |
|
subprocess.call(["pip", "install", "scikit-learn"]) |
|
subprocess.call(["python", "-m", "pip" ,"install", "--upgrade pip"]) |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LinearRegression |
|
import numpy as np |
|
|
|
import gradio as gr |
|
|
|
|
|
df=pd.read_csv('GOOG.csv') |
|
y=df['Close'] |
|
p=df.drop('Close',axis=1) |
|
q=p.drop('Date',axis=1) |
|
gw=q.drop('High',axis=1) |
|
g=q.drop('Adj Close',axis=1) |
|
x=g |
|
|
|
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=100) |
|
|
|
lr=LinearRegression() |
|
lr.fit(x_train,y_train) |
|
y_lr_train_pred=lr.predict(x_train) |
|
y_lr_test_pred=lr.predict(x_test) |
|
def pre(features): |
|
a = np.array(list(map(float, features.split(",")))) |
|
|
|
a_reshaped = a.reshape(1, -1) |
|
|
|
prediction = lr.predict(a_reshaped) |
|
|
|
return prediction[0] |
|
|
|
iface = gr.Interface(fn=pre, inputs="text", outputs="text") |
|
iface.launch() |
|
|