Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
import gradio as gr
|
4 |
+
import tensorflow as tf
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from tensorflow.keras.models import load_model
|
8 |
+
|
9 |
+
# Load the pre-trained model
|
10 |
+
new_model = load_model('cat_classifier_model.h5')
|
11 |
+
|
12 |
+
def classify_image(image_path):
|
13 |
+
img = image.load_img(image_path, target_size=(224, 224))
|
14 |
+
img_array = image.img_to_array(img)
|
15 |
+
img_array = np.expand_dims(img_array, axis=0)
|
16 |
+
img_array /= 255.0 # Rescale to values between 0 and 1 (same as during training)
|
17 |
+
|
18 |
+
prediction = model.predict(img_array)
|
19 |
+
if prediction[0][0] > 0.5:
|
20 |
+
return "not a tablet"
|
21 |
+
else:
|
22 |
+
return "is a tablet"
|
23 |
+
|
24 |
+
# Create a Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=classify_image,
|
27 |
+
inputs=gr.Image(),
|
28 |
+
outputs="text",
|
29 |
+
live=True,
|
30 |
+
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the Gradio interface
|
34 |
+
iface.launch()
|