|
import streamlit as st |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.document_loaders import PyPDFLoader |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
from transformers import pipeline |
|
import torch |
|
import base64 |
|
from PIL import Image |
|
|
|
st.image("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png") |
|
|
|
|
|
model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M" |
|
model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint) |
|
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint) |
|
|
|
|
|
def preprocess_pdf(file): |
|
loader = PyPDFLoader(file) |
|
pages = loader.load_and_split() |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=170, chunk_overlap=70) |
|
texts = text_splitter.split_documents(pages) |
|
final_text = "" |
|
for text in texts: |
|
final_text = final_text + text.page_content |
|
return final_text |
|
|
|
@st.cache_data |
|
|
|
def language_model_pipeline(filepath): |
|
summarization_pipeline = pipeline( |
|
'summarization', |
|
model=model, |
|
tokenizer=model_tokenizer, |
|
max_length=500, |
|
min_length=32) |
|
input_text = preprocess_pdf(filepath) |
|
summary_result = summarization_pipeline(input_text) |
|
summarized_text = summary_result[0]['summary_text'] |
|
return summarized_text |
|
|
|
title = st.title("PDF Summarization using LaMini") |
|
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf']) |
|
if uploaded_file is not None: |
|
st.success("File Uploaded") |
|
if st.button("Summarize"): |
|
filepath = uploaded_file.name |
|
with open(filepath, "wb") as temp_file: |
|
temp_file.write(uploaded_file.read()) |
|
|
|
summarized_result = language_model_pipeline(filepath) |
|
st.info("Summarization Complete") |
|
st.success(summarized_result) |