summary / app.py
nurindahpratiwi
update
18ef4de
raw
history blame
2.97 kB
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import pipeline
import torch
import base64
custom_html = """
<div class="banner">
<img src="https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png" alt="Banner Image">
</div>
<style>
.banner {
width: 160%;
height: 200px;
overflow: hidden;
}
.banner img {
width: 100%;
height: 200px;
object-fit: cover;
}
</style>
"""
# Display the custom HTML
st.components.v1.html(custom_html)
# Model and tokenizer
model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
# File loader and preprocessing
def preprocess_pdf(file):
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=170, chunk_overlap=70)
texts = text_splitter.split_documents(pages)
final_text = ""
for text in texts:
final_text = final_text + text.page_content
return final_text
# Language Model pipeline
def language_model_pipeline(filepath, maxlength):
summarization_pipeline = pipeline(
'summarization',
model=model,
tokenizer=model_tokenizer,
max_length=maxlength,
min_length=70)
input_text = preprocess_pdf(filepath)
summary_result = summarization_pipeline(input_text)
summarized_text = summary_result[0]['summary_text']
return summarized_text
@st.cache_data
# Function to display the PDF content
def display_pdf(file):
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
pdf_display = f'<object data="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></object>'
st.markdown(pdf_display, unsafe_allow_html=True)
# Streamlit code
#st.set_page_config(layout="wide")
def main():
st.title("PDF Summarization App using Language Model")
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
maxlength = st.number_input("Max token", min_value=1, max_value=10, value=5, step=1)
if uploaded_file is not None:
if st.button("Summarize"):
col1, col2 = st.columns(2)
filepath = uploaded_file.name
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
with col1:
st.info("Uploaded File")
pdf_view = display_pdf(filepath)
with col2:
summarized_result = language_model_pipeline(filepath, maxlength)
st.info("Summarization Complete")
st.success(summarized_result)
if __name__ == "__main__":
main()