Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from htmltemp import css, bot_template, user_template
|
10 |
+
from langchain.llms import HuggingFaceHub
|
11 |
+
|
12 |
+
|
13 |
+
def main():
|
14 |
+
load_dotenv()
|
15 |
+
st.set_page_config(page_title="PDF Chatbot", page_icon="π")
|
16 |
+
custom_html = """
|
17 |
+
<div class="banner">
|
18 |
+
<img src="https://www.canva.com/design/DAFys-F940k/2s_2FuK_FCWlBKS8VEWLMA/view?utm_content=DAFys-F940k&utm_campaign=designshare&utm_medium=link&utm_source=editor" alt="Banner Image">
|
19 |
+
</div>
|
20 |
+
<style>
|
21 |
+
.banner {
|
22 |
+
width: 160%;
|
23 |
+
height: 200px;
|
24 |
+
overflow: hidden;
|
25 |
+
}
|
26 |
+
.banner img {
|
27 |
+
width: 100%;
|
28 |
+
object-fit: cover;
|
29 |
+
}
|
30 |
+
</style>
|
31 |
+
"""
|
32 |
+
st.write(css, unsafe_allow_html=True)
|
33 |
+
|
34 |
+
if "conversation" not in st.session_state:
|
35 |
+
st.session_state.conversation = None
|
36 |
+
if "chat_history" not in st.session_state:
|
37 |
+
st.session_state.chat_history = None
|
38 |
+
|
39 |
+
st.header("Chat with your PDFs π")
|
40 |
+
user_question = st.text_input("Ask a question about your documents:")
|
41 |
+
if user_question:
|
42 |
+
handle_userinput(user_question)
|
43 |
+
|
44 |
+
with st.sidebar:
|
45 |
+
st.sidebar.info("""Note: I haven't used any GPU for this project so It can take
|
46 |
+
long time to process large PDFs. Also this is POC project and can be easily upgraded
|
47 |
+
with better model and resources. """)
|
48 |
+
|
49 |
+
st.subheader("Your PDFs")
|
50 |
+
pdf_docs = st.file_uploader(
|
51 |
+
"Upload your PDFs here", accept_multiple_files=True
|
52 |
+
)
|
53 |
+
if st.button("Process"):
|
54 |
+
with st.spinner("Processing"):
|
55 |
+
# get pdf text
|
56 |
+
raw_text = get_pdf_text(pdf_docs)
|
57 |
+
|
58 |
+
# get the text chunks
|
59 |
+
text_chunks = get_text_chunks(raw_text)
|
60 |
+
|
61 |
+
# create vector store
|
62 |
+
vectorstore = get_vectorstore(text_chunks)
|
63 |
+
|
64 |
+
# create conversation chain
|
65 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
66 |
+
st.success("file uploaded")
|
67 |
+
|
68 |
+
|
69 |
+
def get_pdf_text(pdf_docs):
|
70 |
+
text = ""
|
71 |
+
for pdf in pdf_docs:
|
72 |
+
pdf_reader = PdfReader(pdf)
|
73 |
+
for page in pdf_reader.pages:
|
74 |
+
text += page.extract_text()
|
75 |
+
return text
|
76 |
+
|
77 |
+
|
78 |
+
def get_text_chunks(text):
|
79 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
80 |
+
separators=["\n\n", "\n", "."], chunk_size=900, chunk_overlap=200, length_function=len
|
81 |
+
)
|
82 |
+
chunks = text_splitter.split_text(text)
|
83 |
+
return chunks
|
84 |
+
|
85 |
+
|
86 |
+
def get_vectorstore(text_chunks):
|
87 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5")
|
88 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
89 |
+
return vectorstore
|
90 |
+
|
91 |
+
|
92 |
+
def get_conversation_chain(vectorstore):
|
93 |
+
llm = HuggingFaceHub(
|
94 |
+
repo_id="google/flan-t5-large",
|
95 |
+
model_kwargs={"temperature": 0.5, "max_length": 1024},
|
96 |
+
|
97 |
+
)
|
98 |
+
|
99 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
100 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
101 |
+
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
102 |
+
)
|
103 |
+
return conversation_chain
|
104 |
+
|
105 |
+
|
106 |
+
def handle_userinput(user_question):
|
107 |
+
response = st.session_state.conversation({"question": user_question})
|
108 |
+
st.session_state.chat_history = response["chat_history"]
|
109 |
+
|
110 |
+
for i, message in enumerate(st.session_state.chat_history):
|
111 |
+
if i % 2 == 0:
|
112 |
+
st.write(
|
113 |
+
user_template.replace("{{MSG}}", message.content),
|
114 |
+
unsafe_allow_html=True,
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
st.write(
|
118 |
+
bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True
|
119 |
+
)
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
main()
|