Spaces:
Sleeping
Sleeping
from transformers import ViltProcessor, ViltForQuestionAnswering, BlipProcessor, BlipForQuestionAnswering | |
from transformers.utils import logging | |
import torch | |
class Inference: | |
def __init__(self): | |
self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
self.blip_model_saffal = BlipForQuestionAnswering.from_pretrained("wiusdy/blip_pretrained_saffal_fashion_finetuning") | |
self.blip_model_control_net = BlipForQuestionAnswering.from_pretrained("wiusdy/blip_pretrained_control_net_fashion_finetuning") | |
logging.set_verbosity_info() | |
self.logger = logging.get_logger("transformers") | |
def inference(self, image, text): | |
self.logger.info(f"Running inference for model BLIP Saffal") | |
BLIP_saffal_inference = self.__inference_saffal_blip(image, text) | |
self.logger.info(f"Running inference for model BLIP Control Net") | |
BLIP_control_net_inference = self.__inference_control_net_blip(image, text) | |
return BLIP_saffal_inference, BLIP_control_net_inference | |
def __inference_saffal_blip(self, image, text): | |
encoding = self.blip_processor(image, text, return_tensors="pt") | |
out = self.blip_model_saffal.generate(**encoding) | |
generated_text = self.blip_processor.decode(out[0], skip_special_tokens=True) | |
return f"{generated_text}" | |
def __inference_control_net_blip(self, image, text): | |
encoding = self.blip_processor(image, text, return_tensors="pt") | |
out = self.blip_model_control_net.generate(**encoding) | |
generated_text = self.blip_processor.decode(out[0], skip_special_tokens=True) | |
return f"{generated_text}" |