begin / modules /chat_func.py
withai4all's picture
Upload 26 files
feff254
raw
history blame
17.4 kB
# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import os
import requests
import urllib3
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from llama_index.indices.query.vector_store import GPTVectorStoreIndexQuery
from llama_index.indices.query.schema import QueryBundle
from langchain.llms import OpenAIChat
from modules.presets import *
from modules.llama_func import *
from modules.utils import *
import modules.shared as shared
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
def get_response(
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
history = [construct_system(system_prompt), *history]
payload = {
"model": selected_model,
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if stream:
timeout = timeout_streaming
else:
timeout = timeout_all
proxies = get_proxies()
# 如果有自定义的api-url,使用自定义url发送请求,否则使用默认设置发送请求
if shared.state.api_url != API_URL:
logging.info(f"使用自定义API URL: {shared.state.api_url}")
response = requests.post(
shared.state.api_url,
headers=headers,
json=payload,
stream=True,
timeout=timeout,
proxies=proxies,
)
return response
def stream_predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=None,
display_append=""
):
def get_return_value():
return chatbot, history, status_text, all_token_counts
logging.info("实时回答模式")
partial_words = ""
counter = 0
status_text = "开始实时传输回答……"
history.append(construct_user(inputs))
history.append(construct_assistant(""))
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
user_token_count = 0
if fake_input is not None:
input_token_count = count_token(construct_user(fake_input))
else:
input_token_count = count_token(construct_user(inputs))
if len(all_token_counts) == 0:
system_prompt_token_count = count_token(construct_system(system_prompt))
user_token_count = (
input_token_count + system_prompt_token_count
)
else:
user_token_count = input_token_count
all_token_counts.append(user_token_count)
logging.info(f"输入token计数: {user_token_count}")
yield get_return_value()
try:
response = get_response(
openai_api_key,
system_prompt,
history,
temperature,
top_p,
True,
selected_model,
)
except requests.exceptions.ConnectTimeout:
status_text = (
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
)
yield get_return_value()
return
except requests.exceptions.ReadTimeout:
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
yield get_return_value()
error_json_str = ""
if fake_input is not None:
history[-2] = construct_user(fake_input)
for chunk in response.iter_lines():
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
chunk = chunk.decode()
chunklength = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
logging.info(chunk)
error_json_str += chunk
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
yield get_return_value()
continue
# decode each line as response data is in bytes
if chunklength > 6 and "delta" in chunk["choices"][0]:
finish_reason = chunk["choices"][0]["finish_reason"]
status_text = construct_token_message(
sum(all_token_counts), stream=True
)
if finish_reason == "stop":
yield get_return_value()
break
try:
partial_words = (
partial_words + chunk["choices"][0]["delta"]["content"]
)
except KeyError:
status_text = (
standard_error_msg
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
+ str(sum(all_token_counts))
)
yield get_return_value()
break
history[-1] = construct_assistant(partial_words)
chatbot[-1] = (chatbot[-1][0], partial_words+display_append)
all_token_counts[-1] += 1
yield get_return_value()
def predict_all(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=None,
display_append=""
):
logging.info("一次性回答模式")
history.append(construct_user(inputs))
history.append(construct_assistant(""))
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
if fake_input is not None:
all_token_counts.append(count_token(construct_user(fake_input)))
else:
all_token_counts.append(count_token(construct_user(inputs)))
try:
response = get_response(
openai_api_key,
system_prompt,
history,
temperature,
top_p,
False,
selected_model,
)
except requests.exceptions.ConnectTimeout:
status_text = (
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
)
return chatbot, history, status_text, all_token_counts
except requests.exceptions.ProxyError:
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.SSLError:
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
response = json.loads(response.text)
if fake_input is not None:
history[-2] = construct_user(fake_input)
try:
content = response["choices"][0]["message"]["content"]
history[-1] = construct_assistant(content)
chatbot[-1] = (chatbot[-1][0], content+display_append)
total_token_count = response["usage"]["total_tokens"]
if fake_input is not None:
all_token_counts[-1] += count_token(construct_assistant(content))
else:
all_token_counts[-1] = total_token_count - sum(all_token_counts)
status_text = construct_token_message(total_token_count)
return chatbot, history, status_text, all_token_counts
except KeyError:
status_text = standard_error_msg + str(response)
return chatbot, history, status_text, all_token_counts
def is_repeated_string(s):
n = len(s)
for i in range(1, n // 2 + 1):
if n % i == 0:
sub = s[:i]
if sub * (n // i) == s:
return True
return False
def predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
use_websearch=False,
files = None,
reply_language="中文",
should_check_token_count=True,
): # repetition_penalty, top_k
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
if is_repeated_string(inputs):
print("================== 有人来浪费了 ======================")
yield chatbot+[(inputs, "🖕️🖕️🖕️🖕️🖕️看不起你")], history, "🖕️🖕️🖕️🖕️🖕️🖕️", all_token_counts
return
if should_check_token_count:
yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts
if reply_language == "跟随问题语言(不稳定)":
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
old_inputs = None
display_reference = []
limited_context = False
if files:
limited_context = True
old_inputs = inputs
msg = "加载索引中……(这可能需要几分钟)"
logging.info(msg)
yield chatbot+[(inputs, "")], history, msg, all_token_counts
index = construct_index(openai_api_key, file_src=files)
msg = "索引构建完成,获取回答中……"
logging.info(msg)
yield chatbot+[(inputs, "")], history, msg, all_token_counts
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model))
prompt_helper = PromptHelper(max_input_size = 4096, num_output = 5, max_chunk_overlap = 20, chunk_size_limit=600)
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore)
query_bundle = QueryBundle(inputs)
nodes = query_object.retrieve(query_bundle)
reference_results = [n.node.text for n in nodes]
reference_results = add_source_numbers(reference_results, use_source=False)
display_reference = add_details(reference_results)
display_reference = "\n\n" + "".join(display_reference)
inputs = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language )
)
elif use_websearch:
limited_context = True
search_results = ddg(inputs, max_results=5)
old_inputs = inputs
reference_results = []
for idx, result in enumerate(search_results):
logging.info(f"搜索结果{idx + 1}{result}")
domain_name = urllib3.util.parse_url(result["href"]).host
reference_results.append([result["body"], result["href"]])
display_reference.append(f"{idx+1}. [{domain_name}]({result['href']})\n")
reference_results = add_source_numbers(reference_results)
display_reference = "\n\n" + "".join(display_reference)
inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language )
)
else:
display_reference = ""
if len(openai_api_key) != 51:
status_text = standard_error_msg + no_apikey_msg
logging.info(status_text)
chatbot.append((inputs, ""))
if len(history) == 0:
history.append(construct_user(inputs))
history.append("")
all_token_counts.append(0)
else:
history[-2] = construct_user(inputs)
yield chatbot+[(inputs, "")], history, status_text, all_token_counts
return
elif len(inputs.strip()) == 0:
status_text = standard_error_msg + no_input_msg
logging.info(status_text)
yield chatbot+[(inputs, "")], history, status_text, all_token_counts
return
if stream:
logging.info("使用流式传输")
iter = stream_predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=old_inputs,
display_append=display_reference
)
for chatbot, history, status_text, all_token_counts in iter:
if shared.state.interrupted:
shared.state.recover()
return
yield chatbot, history, status_text, all_token_counts
else:
logging.info("不使用流式传输")
chatbot, history, status_text, all_token_counts = predict_all(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=old_inputs,
display_append=display_reference
)
yield chatbot, history, status_text, all_token_counts
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
if len(history) > 1 and history[-1]["content"] != inputs:
logging.info(
"回答为:"
+ colorama.Fore.BLUE
+ f"{history[-1]['content']}"
+ colorama.Style.RESET_ALL
)
if limited_context:
history = history[-4:]
all_token_counts = all_token_counts[-2:]
yield chatbot, history, status_text, all_token_counts
if stream:
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"]
else:
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"]
if sum(all_token_counts) > max_token and should_check_token_count:
status_text = f"精简token中{all_token_counts}/{max_token}"
logging.info(status_text)
yield chatbot, history, status_text, all_token_counts
iter = reduce_token_size(
openai_api_key,
system_prompt,
history,
chatbot,
all_token_counts,
top_p,
temperature,
max_token//2,
selected_model=selected_model,
)
for chatbot, history, status_text, all_token_counts in iter:
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
yield chatbot, history, status_text, all_token_counts
def retry(
openai_api_key,
system_prompt,
history,
chatbot,
token_count,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
reply_language="中文",
):
logging.info("重试中……")
if len(history) == 0:
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
return
history.pop()
inputs = history.pop()["content"]
token_count.pop()
iter = predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
token_count,
top_p,
temperature,
stream=stream,
selected_model=selected_model,
reply_language=reply_language,
)
logging.info("重试中……")
for x in iter:
yield x
logging.info("重试完毕")
def reduce_token_size(
openai_api_key,
system_prompt,
history,
chatbot,
token_count,
top_p,
temperature,
max_token_count,
selected_model=MODELS[0],
reply_language="中文",
):
logging.info("开始减少token数量……")
iter = predict(
openai_api_key,
system_prompt,
history,
summarize_prompt,
chatbot,
token_count,
top_p,
temperature,
selected_model=selected_model,
should_check_token_count=False,
reply_language=reply_language,
)
logging.info(f"chatbot: {chatbot}")
flag = False
for chatbot, history, status_text, previous_token_count in iter:
num_chat = find_n(previous_token_count, max_token_count)
logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats")
if flag:
chatbot = chatbot[:-1]
flag = True
history = history[-2*num_chat:] if num_chat > 0 else []
token_count = previous_token_count[-num_chat:] if num_chat > 0 else []
msg = f"保留了最近{num_chat}轮对话"
yield chatbot, history, msg + "," + construct_token_message(
sum(token_count) if len(token_count) > 0 else 0,
), token_count
logging.info(msg)
logging.info("减少token数量完毕")