Spaces:
Paused
Paused
import torch | |
from peft import PeftModel | |
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Response:""" | |
def load_tokenizer_and_model(base_model,adapter_model,load_8bit=False): | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: # noqa: E722 | |
pass | |
tokenizer = LlamaTokenizer.from_pretrained(base_model) | |
if device == "cuda": | |
model = LlamaForCausalLM.from_pretrained( | |
base_model, | |
load_in_8bit=load_8bit, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
adapter_model, | |
torch_dtype=torch.float16, | |
) | |
elif device == "mps": | |
model = LlamaForCausalLM.from_pretrained( | |
base_model, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
adapter_model, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = LlamaForCausalLM.from_pretrained( | |
base_model, device_map={"": device}, low_cpu_mem_usage=True | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
adapter_model, | |
device_map={"": device}, | |
) | |
if not load_8bit: | |
model.half() # seems to fix bugs for some users. | |
model.eval() | |
if torch.__version__ >= "2": | |
model = torch.compile(model) | |
return tokenizer,model,device | |