willianmcs commited on
Commit
d2f30b8
1 Parent(s): 2d42afe

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +958 -0
app.py ADDED
@@ -0,0 +1,958 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import os
3
+ sys.path.append(os.path.dirname(os.path.realpath(__file__)))
4
+ sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
5
+ import gradio as gr
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
7
+ import torch
8
+ from diffusers import StableDiffusionPipeline
9
+ from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
10
+ import os
11
+ from langchain.agents.initialize import initialize_agent
12
+ from langchain.agents.tools import Tool
13
+ from langchain.chains.conversation.memory import ConversationBufferMemory
14
+ from langchain.llms.openai import OpenAI
15
+ import re
16
+ import uuid
17
+ from diffusers import StableDiffusionInpaintPipeline
18
+ from PIL import Image
19
+ import numpy as np
20
+ from omegaconf import OmegaConf
21
+ from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
22
+ import cv2
23
+ import einops
24
+ from pytorch_lightning import seed_everything
25
+ import random
26
+ from ldm.util import instantiate_from_config
27
+ from ControlNet.cldm.model import create_model, load_state_dict
28
+ from ControlNet.cldm.ddim_hacked import DDIMSampler
29
+ from ControlNet.annotator.canny import CannyDetector
30
+ from ControlNet.annotator.mlsd import MLSDdetector
31
+ from ControlNet.annotator.util import HWC3, resize_image
32
+ from ControlNet.annotator.hed import HEDdetector, nms
33
+ from ControlNet.annotator.openpose import OpenposeDetector
34
+ from ControlNet.annotator.uniformer import UniformerDetector
35
+ from ControlNet.annotator.midas import MidasDetector
36
+
37
+ VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
38
+
39
+ Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.
40
+
41
+ Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description.
42
+
43
+ Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics.
44
+
45
+
46
+ TOOLS:
47
+ ------
48
+
49
+ Visual ChatGPT has access to the following tools:"""
50
+
51
+ VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
52
+
53
+ ```
54
+ Thought: Do I need to use a tool? Yes
55
+ Action: the action to take, should be one of [{tool_names}]
56
+ Action Input: the input to the action
57
+ Observation: the result of the action
58
+ ```
59
+
60
+ When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
61
+
62
+ ```
63
+ Thought: Do I need to use a tool? No
64
+ {ai_prefix}: [your response here]
65
+ ```
66
+ """
67
+
68
+ VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
69
+ You will remember to provide the image file name loyally if it's provided in the last tool observation.
70
+
71
+ Begin!
72
+
73
+ Previous conversation history:
74
+ {chat_history}
75
+
76
+ New input: {input}
77
+ Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination.
78
+ The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
79
+ Thought: Do I need to use a tool? {agent_scratchpad}"""
80
+
81
+ def cut_dialogue_history(history_memory, keep_last_n_words=500):
82
+ tokens = history_memory.split()
83
+ n_tokens = len(tokens)
84
+ print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}")
85
+ if n_tokens < keep_last_n_words:
86
+ return history_memory
87
+ else:
88
+ paragraphs = history_memory.split('\n')
89
+ last_n_tokens = n_tokens
90
+ while last_n_tokens >= keep_last_n_words:
91
+ last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
92
+ paragraphs = paragraphs[1:]
93
+ return '\n' + '\n'.join(paragraphs)
94
+
95
+ def get_new_image_name(org_img_name, func_name="update"):
96
+ head_tail = os.path.split(org_img_name)
97
+ head = head_tail[0]
98
+ tail = head_tail[1]
99
+ name_split = tail.split('.')[0].split('_')
100
+ this_new_uuid = str(uuid.uuid4())[0:4]
101
+ if len(name_split) == 1:
102
+ most_org_file_name = name_split[0]
103
+ recent_prev_file_name = name_split[0]
104
+ new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
105
+ else:
106
+ assert len(name_split) == 4
107
+ most_org_file_name = name_split[3]
108
+ recent_prev_file_name = name_split[0]
109
+ new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
110
+ return os.path.join(head, new_file_name)
111
+
112
+ def create_model(config_path, device):
113
+ config = OmegaConf.load(config_path)
114
+ OmegaConf.update(config, "model.params.cond_stage_config.params.device", device)
115
+ model = instantiate_from_config(config.model).cpu()
116
+ print(f'Loaded model config from [{config_path}]')
117
+ return model
118
+
119
+ class MaskFormer:
120
+ def __init__(self, device):
121
+ self.device = device
122
+ self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
123
+ self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
124
+
125
+ def inference(self, image_path, text):
126
+ threshold = 0.5
127
+ min_area = 0.02
128
+ padding = 20
129
+ original_image = Image.open(image_path)
130
+ image = original_image.resize((512, 512))
131
+ inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
132
+ with torch.no_grad():
133
+ outputs = self.model(**inputs)
134
+ mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
135
+ area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
136
+ if area_ratio < min_area:
137
+ return None
138
+ true_indices = np.argwhere(mask)
139
+ mask_array = np.zeros_like(mask, dtype=bool)
140
+ for idx in true_indices:
141
+ padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
142
+ mask_array[padded_slice] = True
143
+ visual_mask = (mask_array * 255).astype(np.uint8)
144
+ image_mask = Image.fromarray(visual_mask)
145
+ return image_mask.resize(image.size)
146
+
147
+ class ImageEditing:
148
+ def __init__(self, device):
149
+ print("Initializing StableDiffusionInpaint to %s" % device)
150
+ self.device = device
151
+ self.mask_former = MaskFormer(device=self.device)
152
+ self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",).to(device)
153
+
154
+ def remove_part_of_image(self, input):
155
+ image_path, to_be_removed_txt = input.split(",")
156
+ print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}')
157
+ return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background")
158
+
159
+ def replace_part_of_image(self, input):
160
+ image_path, to_be_replaced_txt, replace_with_txt = input.split(",")
161
+ print(f'replace_part_of_image: replace_with_txt {replace_with_txt}')
162
+ original_image = Image.open(image_path)
163
+ mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
164
+ updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0]
165
+ updated_image_path = get_new_image_name(image_path, func_name="replace-something")
166
+ updated_image.save(updated_image_path)
167
+ return updated_image_path
168
+
169
+ class Pix2Pix:
170
+ def __init__(self, device):
171
+ print("Initializing Pix2Pix to %s" % device)
172
+ self.device = device
173
+ self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device)
174
+ self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
175
+
176
+ def inference(self, inputs):
177
+ """Change style of image."""
178
+ print("===>Starting Pix2Pix Inference")
179
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
180
+ original_image = Image.open(image_path)
181
+ image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0]
182
+ updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
183
+ image.save(updated_image_path)
184
+ return updated_image_path
185
+
186
+ class T2I:
187
+ def __init__(self, device):
188
+ print("Initializing T2I to %s" % device)
189
+ self.device = device
190
+ self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
191
+ self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
192
+ self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
193
+ self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
194
+ self.pipe.to(device)
195
+
196
+ def inference(self, text):
197
+ image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
198
+ refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
199
+ print(f'{text} refined to {refined_text}')
200
+ image = self.pipe(refined_text).images[0]
201
+ image.save(image_filename)
202
+ print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
203
+ return image_filename
204
+
205
+ class ImageCaptioning:
206
+ def __init__(self, device):
207
+ print("Initializing ImageCaptioning to %s" % device)
208
+ self.device = device
209
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
210
+ self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
211
+
212
+ def inference(self, image_path):
213
+ inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
214
+ out = self.model.generate(**inputs)
215
+ captions = self.processor.decode(out[0], skip_special_tokens=True)
216
+ return captions
217
+
218
+ class image2canny:
219
+ def __init__(self):
220
+ print("Direct detect canny.")
221
+ self.detector = CannyDetector()
222
+ self.low_thresh = 100
223
+ self.high_thresh = 200
224
+
225
+ def inference(self, inputs):
226
+ print("===>Starting image2canny Inference")
227
+ image = Image.open(inputs)
228
+ image = np.array(image)
229
+ canny = self.detector(image, self.low_thresh, self.high_thresh)
230
+ canny = 255 - canny
231
+ image = Image.fromarray(canny)
232
+ updated_image_path = get_new_image_name(inputs, func_name="edge")
233
+ image.save(updated_image_path)
234
+ return updated_image_path
235
+
236
+ class canny2image:
237
+ def __init__(self, device):
238
+ print("Initialize the canny2image model.")
239
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
240
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu'))
241
+ self.model = model.to(device)
242
+ self.device = device
243
+ self.ddim_sampler = DDIMSampler(self.model)
244
+ self.ddim_steps = 20
245
+ self.image_resolution = 512
246
+ self.num_samples = 1
247
+ self.save_memory = False
248
+ self.strength = 1.0
249
+ self.guess_mode = False
250
+ self.scale = 9.0
251
+ self.seed = -1
252
+ self.a_prompt = 'best quality, extremely detailed'
253
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
254
+
255
+ def inference(self, inputs):
256
+ print("===>Starting canny2image Inference")
257
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
258
+ image = Image.open(image_path)
259
+ image = np.array(image)
260
+ image = 255 - image
261
+ prompt = instruct_text
262
+ img = resize_image(HWC3(image), self.image_resolution)
263
+ H, W, C = img.shape
264
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
265
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
266
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
267
+ self.seed = random.randint(0, 65535)
268
+ seed_everything(self.seed)
269
+ if self.save_memory:
270
+ self.model.low_vram_shift(is_diffusing=False)
271
+ cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
272
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
273
+ shape = (4, H // 8, W // 8)
274
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
275
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
276
+ if self.save_memory:
277
+ self.model.low_vram_shift(is_diffusing=False)
278
+ x_samples = self.model.decode_first_stage(samples)
279
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
280
+ updated_image_path = get_new_image_name(image_path, func_name="canny2image")
281
+ real_image = Image.fromarray(x_samples[0]) # get default the index0 image
282
+ real_image.save(updated_image_path)
283
+ return updated_image_path
284
+
285
+ class image2line:
286
+ def __init__(self):
287
+ print("Direct detect straight line...")
288
+ self.detector = MLSDdetector()
289
+ self.value_thresh = 0.1
290
+ self.dis_thresh = 0.1
291
+ self.resolution = 512
292
+
293
+ def inference(self, inputs):
294
+ print("===>Starting image2hough Inference")
295
+ image = Image.open(inputs)
296
+ image = np.array(image)
297
+ image = HWC3(image)
298
+ hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh)
299
+ updated_image_path = get_new_image_name(inputs, func_name="line-of")
300
+ hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
301
+ image = Image.fromarray(hough)
302
+ image.save(updated_image_path)
303
+ return updated_image_path
304
+
305
+
306
+ class line2image:
307
+ def __init__(self, device):
308
+ print("Initialize the line2image model...")
309
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
310
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu'))
311
+ self.model = model.to(device)
312
+ self.device = device
313
+ self.ddim_sampler = DDIMSampler(self.model)
314
+ self.ddim_steps = 20
315
+ self.image_resolution = 512
316
+ self.num_samples = 1
317
+ self.save_memory = False
318
+ self.strength = 1.0
319
+ self.guess_mode = False
320
+ self.scale = 9.0
321
+ self.seed = -1
322
+ self.a_prompt = 'best quality, extremely detailed'
323
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
324
+
325
+ def inference(self, inputs):
326
+ print("===>Starting line2image Inference")
327
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
328
+ image = Image.open(image_path)
329
+ image = np.array(image)
330
+ image = 255 - image
331
+ prompt = instruct_text
332
+ img = resize_image(HWC3(image), self.image_resolution)
333
+ H, W, C = img.shape
334
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
335
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
336
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
337
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
338
+ self.seed = random.randint(0, 65535)
339
+ seed_everything(self.seed)
340
+ if self.save_memory:
341
+ self.model.low_vram_shift(is_diffusing=False)
342
+ cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
343
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
344
+ shape = (4, H // 8, W // 8)
345
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
346
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
347
+ if self.save_memory:
348
+ self.model.low_vram_shift(is_diffusing=False)
349
+ x_samples = self.model.decode_first_stage(samples)
350
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\
351
+ cpu().numpy().clip(0,255).astype(np.uint8)
352
+ updated_image_path = get_new_image_name(image_path, func_name="line2image")
353
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
354
+ real_image.save(updated_image_path)
355
+ return updated_image_path
356
+
357
+
358
+ class image2hed:
359
+ def __init__(self):
360
+ print("Direct detect soft HED boundary...")
361
+ self.detector = HEDdetector()
362
+ self.resolution = 512
363
+
364
+ def inference(self, inputs):
365
+ print("===>Starting image2hed Inference")
366
+ image = Image.open(inputs)
367
+ image = np.array(image)
368
+ image = HWC3(image)
369
+ hed = self.detector(resize_image(image, self.resolution))
370
+ updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
371
+ image = Image.fromarray(hed)
372
+ image.save(updated_image_path)
373
+ return updated_image_path
374
+
375
+
376
+ class hed2image:
377
+ def __init__(self, device):
378
+ print("Initialize the hed2image model...")
379
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
380
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu'))
381
+ self.model = model.to(device)
382
+ self.device = device
383
+ self.ddim_sampler = DDIMSampler(self.model)
384
+ self.ddim_steps = 20
385
+ self.image_resolution = 512
386
+ self.num_samples = 1
387
+ self.save_memory = False
388
+ self.strength = 1.0
389
+ self.guess_mode = False
390
+ self.scale = 9.0
391
+ self.seed = -1
392
+ self.a_prompt = 'best quality, extremely detailed'
393
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
394
+
395
+ def inference(self, inputs):
396
+ print("===>Starting hed2image Inference")
397
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
398
+ image = Image.open(image_path)
399
+ image = np.array(image)
400
+ prompt = instruct_text
401
+ img = resize_image(HWC3(image), self.image_resolution)
402
+ H, W, C = img.shape
403
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
404
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
405
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
406
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
407
+ self.seed = random.randint(0, 65535)
408
+ seed_everything(self.seed)
409
+ if self.save_memory:
410
+ self.model.low_vram_shift(is_diffusing=False)
411
+ cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
412
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
413
+ shape = (4, H // 8, W // 8)
414
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
415
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
416
+ if self.save_memory:
417
+ self.model.low_vram_shift(is_diffusing=False)
418
+ x_samples = self.model.decode_first_stage(samples)
419
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
420
+ updated_image_path = get_new_image_name(image_path, func_name="hed2image")
421
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
422
+ real_image.save(updated_image_path)
423
+ return updated_image_path
424
+
425
+ class image2scribble:
426
+ def __init__(self):
427
+ print("Direct detect scribble.")
428
+ self.detector = HEDdetector()
429
+ self.resolution = 512
430
+
431
+ def inference(self, inputs):
432
+ print("===>Starting image2scribble Inference")
433
+ image = Image.open(inputs)
434
+ image = np.array(image)
435
+ image = HWC3(image)
436
+ detected_map = self.detector(resize_image(image, self.resolution))
437
+ detected_map = HWC3(detected_map)
438
+ image = resize_image(image, self.resolution)
439
+ H, W, C = image.shape
440
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
441
+ detected_map = nms(detected_map, 127, 3.0)
442
+ detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
443
+ detected_map[detected_map > 4] = 255
444
+ detected_map[detected_map < 255] = 0
445
+ detected_map = 255 - detected_map
446
+ updated_image_path = get_new_image_name(inputs, func_name="scribble")
447
+ image = Image.fromarray(detected_map)
448
+ image.save(updated_image_path)
449
+ return updated_image_path
450
+
451
+ class scribble2image:
452
+ def __init__(self, device):
453
+ print("Initialize the scribble2image model...")
454
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
455
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu'))
456
+ self.model = model.to(device)
457
+ self.device = device
458
+ self.ddim_sampler = DDIMSampler(self.model)
459
+ self.ddim_steps = 20
460
+ self.image_resolution = 512
461
+ self.num_samples = 1
462
+ self.save_memory = False
463
+ self.strength = 1.0
464
+ self.guess_mode = False
465
+ self.scale = 9.0
466
+ self.seed = -1
467
+ self.a_prompt = 'best quality, extremely detailed'
468
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
469
+
470
+ def inference(self, inputs):
471
+ print("===>Starting scribble2image Inference")
472
+ print(f'sketch device {self.device}')
473
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
474
+ image = Image.open(image_path)
475
+ image = np.array(image)
476
+ prompt = instruct_text
477
+ image = 255 - image
478
+ img = resize_image(HWC3(image), self.image_resolution)
479
+ H, W, C = img.shape
480
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
481
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
482
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
483
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
484
+ self.seed = random.randint(0, 65535)
485
+ seed_everything(self.seed)
486
+ if self.save_memory:
487
+ self.model.low_vram_shift(is_diffusing=False)
488
+ cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
489
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
490
+ shape = (4, H // 8, W // 8)
491
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
492
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
493
+ if self.save_memory:
494
+ self.model.low_vram_shift(is_diffusing=False)
495
+ x_samples = self.model.decode_first_stage(samples)
496
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
497
+ updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
498
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
499
+ real_image.save(updated_image_path)
500
+ return updated_image_path
501
+
502
+ class image2pose:
503
+ def __init__(self):
504
+ print("Direct human pose.")
505
+ self.detector = OpenposeDetector()
506
+ self.resolution = 512
507
+
508
+ def inference(self, inputs):
509
+ print("===>Starting image2pose Inference")
510
+ image = Image.open(inputs)
511
+ image = np.array(image)
512
+ image = HWC3(image)
513
+ detected_map, _ = self.detector(resize_image(image, self.resolution))
514
+ detected_map = HWC3(detected_map)
515
+ image = resize_image(image, self.resolution)
516
+ H, W, C = image.shape
517
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
518
+ updated_image_path = get_new_image_name(inputs, func_name="human-pose")
519
+ image = Image.fromarray(detected_map)
520
+ image.save(updated_image_path)
521
+ return updated_image_path
522
+
523
+ class pose2image:
524
+ def __init__(self, device):
525
+ print("Initialize the pose2image model...")
526
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
527
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu'))
528
+ self.model = model.to(device)
529
+ self.device = device
530
+ self.ddim_sampler = DDIMSampler(self.model)
531
+ self.ddim_steps = 20
532
+ self.image_resolution = 512
533
+ self.num_samples = 1
534
+ self.save_memory = False
535
+ self.strength = 1.0
536
+ self.guess_mode = False
537
+ self.scale = 9.0
538
+ self.seed = -1
539
+ self.a_prompt = 'best quality, extremely detailed'
540
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
541
+
542
+ def inference(self, inputs):
543
+ print("===>Starting pose2image Inference")
544
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
545
+ image = Image.open(image_path)
546
+ image = np.array(image)
547
+ prompt = instruct_text
548
+ img = resize_image(HWC3(image), self.image_resolution)
549
+ H, W, C = img.shape
550
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
551
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
552
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
553
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
554
+ self.seed = random.randint(0, 65535)
555
+ seed_everything(self.seed)
556
+ if self.save_memory:
557
+ self.model.low_vram_shift(is_diffusing=False)
558
+ cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
559
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
560
+ shape = (4, H // 8, W // 8)
561
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
562
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
563
+ if self.save_memory:
564
+ self.model.low_vram_shift(is_diffusing=False)
565
+ x_samples = self.model.decode_first_stage(samples)
566
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
567
+ updated_image_path = get_new_image_name(image_path, func_name="pose2image")
568
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
569
+ real_image.save(updated_image_path)
570
+ return updated_image_path
571
+
572
+ class image2seg:
573
+ def __init__(self):
574
+ print("Direct segmentations.")
575
+ self.detector = UniformerDetector()
576
+ self.resolution = 512
577
+
578
+ def inference(self, inputs):
579
+ print("===>Starting image2seg Inference")
580
+ image = Image.open(inputs)
581
+ image = np.array(image)
582
+ image = HWC3(image)
583
+ detected_map = self.detector(resize_image(image, self.resolution))
584
+ detected_map = HWC3(detected_map)
585
+ image = resize_image(image, self.resolution)
586
+ H, W, C = image.shape
587
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
588
+ updated_image_path = get_new_image_name(inputs, func_name="segmentation")
589
+ image = Image.fromarray(detected_map)
590
+ image.save(updated_image_path)
591
+ return updated_image_path
592
+
593
+ class seg2image:
594
+ def __init__(self, device):
595
+ print("Initialize the seg2image model...")
596
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
597
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu'))
598
+ self.model = model.to(device)
599
+ self.device = device
600
+ self.ddim_sampler = DDIMSampler(self.model)
601
+ self.ddim_steps = 20
602
+ self.image_resolution = 512
603
+ self.num_samples = 1
604
+ self.save_memory = False
605
+ self.strength = 1.0
606
+ self.guess_mode = False
607
+ self.scale = 9.0
608
+ self.seed = -1
609
+ self.a_prompt = 'best quality, extremely detailed'
610
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
611
+
612
+ def inference(self, inputs):
613
+ print("===>Starting seg2image Inference")
614
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
615
+ image = Image.open(image_path)
616
+ image = np.array(image)
617
+ prompt = instruct_text
618
+ img = resize_image(HWC3(image), self.image_resolution)
619
+ H, W, C = img.shape
620
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
621
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
622
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
623
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
624
+ self.seed = random.randint(0, 65535)
625
+ seed_everything(self.seed)
626
+ if self.save_memory:
627
+ self.model.low_vram_shift(is_diffusing=False)
628
+ cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
629
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
630
+ shape = (4, H // 8, W // 8)
631
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
632
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
633
+ if self.save_memory:
634
+ self.model.low_vram_shift(is_diffusing=False)
635
+ x_samples = self.model.decode_first_stage(samples)
636
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
637
+ updated_image_path = get_new_image_name(image_path, func_name="segment2image")
638
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
639
+ real_image.save(updated_image_path)
640
+ return updated_image_path
641
+
642
+ class image2depth:
643
+ def __init__(self):
644
+ print("Direct depth estimation.")
645
+ self.detector = MidasDetector()
646
+ self.resolution = 512
647
+
648
+ def inference(self, inputs):
649
+ print("===>Starting image2depth Inference")
650
+ image = Image.open(inputs)
651
+ image = np.array(image)
652
+ image = HWC3(image)
653
+ detected_map, _ = self.detector(resize_image(image, self.resolution))
654
+ detected_map = HWC3(detected_map)
655
+ image = resize_image(image, self.resolution)
656
+ H, W, C = image.shape
657
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
658
+ updated_image_path = get_new_image_name(inputs, func_name="depth")
659
+ image = Image.fromarray(detected_map)
660
+ image.save(updated_image_path)
661
+ return updated_image_path
662
+
663
+ class depth2image:
664
+ def __init__(self, device):
665
+ print("Initialize depth2image model...")
666
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
667
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu'))
668
+ self.model = model.to(device)
669
+ self.device = device
670
+ self.ddim_sampler = DDIMSampler(self.model)
671
+ self.ddim_steps = 20
672
+ self.image_resolution = 512
673
+ self.num_samples = 1
674
+ self.save_memory = False
675
+ self.strength = 1.0
676
+ self.guess_mode = False
677
+ self.scale = 9.0
678
+ self.seed = -1
679
+ self.a_prompt = 'best quality, extremely detailed'
680
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
681
+
682
+ def inference(self, inputs):
683
+ print("===>Starting depth2image Inference")
684
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
685
+ image = Image.open(image_path)
686
+ image = np.array(image)
687
+ prompt = instruct_text
688
+ img = resize_image(HWC3(image), self.image_resolution)
689
+ H, W, C = img.shape
690
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
691
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
692
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
693
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
694
+ self.seed = random.randint(0, 65535)
695
+ seed_everything(self.seed)
696
+ if self.save_memory:
697
+ self.model.low_vram_shift(is_diffusing=False)
698
+ cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
699
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
700
+ shape = (4, H // 8, W // 8)
701
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
702
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
703
+ if self.save_memory:
704
+ self.model.low_vram_shift(is_diffusing=False)
705
+ x_samples = self.model.decode_first_stage(samples)
706
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
707
+ updated_image_path = get_new_image_name(image_path, func_name="depth2image")
708
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
709
+ real_image.save(updated_image_path)
710
+ return updated_image_path
711
+
712
+ class image2normal:
713
+ def __init__(self):
714
+ print("Direct normal estimation.")
715
+ self.detector = MidasDetector()
716
+ self.resolution = 512
717
+ self.bg_threshold = 0.4
718
+
719
+ def inference(self, inputs):
720
+ print("===>Starting image2 normal Inference")
721
+ image = Image.open(inputs)
722
+ image = np.array(image)
723
+ image = HWC3(image)
724
+ _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
725
+ detected_map = HWC3(detected_map)
726
+ image = resize_image(image, self.resolution)
727
+ H, W, C = image.shape
728
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
729
+ updated_image_path = get_new_image_name(inputs, func_name="normal-map")
730
+ image = Image.fromarray(detected_map)
731
+ image.save(updated_image_path)
732
+ return updated_image_path
733
+
734
+ class normal2image:
735
+ def __init__(self, device):
736
+ print("Initialize normal2image model...")
737
+ model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
738
+ model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu'))
739
+ self.model = model.to(device)
740
+ self.device = device
741
+ self.ddim_sampler = DDIMSampler(self.model)
742
+ self.ddim_steps = 20
743
+ self.image_resolution = 512
744
+ self.num_samples = 1
745
+ self.save_memory = False
746
+ self.strength = 1.0
747
+ self.guess_mode = False
748
+ self.scale = 9.0
749
+ self.seed = -1
750
+ self.a_prompt = 'best quality, extremely detailed'
751
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
752
+
753
+ def inference(self, inputs):
754
+ print("===>Starting normal2image Inference")
755
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
756
+ image = Image.open(image_path)
757
+ image = np.array(image)
758
+ prompt = instruct_text
759
+ img = image[:, :, ::-1].copy()
760
+ img = resize_image(HWC3(img), self.image_resolution)
761
+ H, W, C = img.shape
762
+ img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
763
+ control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
764
+ control = torch.stack([control for _ in range(self.num_samples)], dim=0)
765
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
766
+ self.seed = random.randint(0, 65535)
767
+ seed_everything(self.seed)
768
+ if self.save_memory:
769
+ self.model.low_vram_shift(is_diffusing=False)
770
+ cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
771
+ un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
772
+ shape = (4, H // 8, W // 8)
773
+ self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
774
+ samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
775
+ if self.save_memory:
776
+ self.model.low_vram_shift(is_diffusing=False)
777
+ x_samples = self.model.decode_first_stage(samples)
778
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
779
+ updated_image_path = get_new_image_name(image_path, func_name="normal2image")
780
+ real_image = Image.fromarray(x_samples[0]) # default the index0 image
781
+ real_image.save(updated_image_path)
782
+ return updated_image_path
783
+
784
+ class BLIPVQA:
785
+ def __init__(self, device):
786
+ print("Initializing BLIP VQA to %s" % device)
787
+ self.device = device
788
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
789
+ self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device)
790
+
791
+ def get_answer_from_question_and_image(self, inputs):
792
+ image_path, question = inputs.split(",")
793
+ raw_image = Image.open(image_path).convert('RGB')
794
+ print(F'BLIPVQA :question :{question}')
795
+ inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
796
+ out = self.model.generate(**inputs)
797
+ answer = self.processor.decode(out[0], skip_special_tokens=True)
798
+ return answer
799
+
800
+ class ConversationBot:
801
+ def __init__(self):
802
+ print("Initializing VisualChatGPT")
803
+ self.llm = OpenAI(temperature=0)
804
+ self.edit = ImageEditing(device="cuda:6")
805
+ self.i2t = ImageCaptioning(device="cuda:4")
806
+ self.t2i = T2I(device="cuda:1")
807
+ self.image2canny = image2canny()
808
+ self.canny2image = canny2image(device="cuda:1")
809
+ self.image2line = image2line()
810
+ self.line2image = line2image(device="cuda:1")
811
+ self.image2hed = image2hed()
812
+ self.hed2image = hed2image(device="cuda:2")
813
+ self.image2scribble = image2scribble()
814
+ self.scribble2image = scribble2image(device="cuda:3")
815
+ self.image2pose = image2pose()
816
+ self.pose2image = pose2image(device="cuda:3")
817
+ self.BLIPVQA = BLIPVQA(device="cuda:4")
818
+ self.image2seg = image2seg()
819
+ self.seg2image = seg2image(device="cuda:7")
820
+ self.image2depth = image2depth()
821
+ self.depth2image = depth2image(device="cuda:7")
822
+ self.image2normal = image2normal()
823
+ self.normal2image = normal2image(device="cuda:5")
824
+ self.pix2pix = Pix2Pix(device="cuda:3")
825
+ self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
826
+ self.tools = [
827
+ Tool(name="Get Photo Description", func=self.i2t.inference,
828
+ description="useful when you want to know what is inside the photo. receives image_path as input. "
829
+ "The input to this tool should be a string, representing the image_path. "),
830
+ Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
831
+ description="useful when you want to generate an image from a user input text and save it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
832
+ "The input to this tool should be a string, representing the text used to generate image. "),
833
+ Tool(name="Remove Something From The Photo", func=self.edit.remove_part_of_image,
834
+ description="useful when you want to remove and object or something from the photo from its description or location. "
835
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the object need to be removed. "),
836
+ Tool(name="Replace Something From The Photo", func=self.edit.replace_part_of_image,
837
+ description="useful when you want to replace an object from the object description or location with another object from its description. "
838
+ "The input to this tool should be a comma seperated string of three, representing the image_path, the object to be replaced, the object to be replaced with "),
839
+
840
+ Tool(name="Instruct Image Using Text", func=self.pix2pix.inference,
841
+ description="useful when you want to the style of the image to be like the text. like: make it look like a painting. or make it like a robot. "
842
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the text. "),
843
+ Tool(name="Answer Question About The Image", func=self.BLIPVQA.get_answer_from_question_and_image,
844
+ description="useful when you need an answer for a question based on an image. like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
845
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the question"),
846
+ Tool(name="Edge Detection On Image", func=self.image2canny.inference,
847
+ description="useful when you want to detect the edge of the image. like: detect the edges of this image, or canny detection on image, or peform edge detection on this image, or detect the canny image of this image. "
848
+ "The input to this tool should be a string, representing the image_path"),
849
+ Tool(name="Generate Image Condition On Canny Image", func=self.canny2image.inference,
850
+ description="useful when you want to generate a new real image from both the user desciption and a canny image. like: generate a real image of a object or something from this canny image, or generate a new real image of a object or something from this edge image. "
851
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
852
+ Tool(name="Line Detection On Image", func=self.image2line.inference,
853
+ description="useful when you want to detect the straight line of the image. like: detect the straight lines of this image, or straight line detection on image, or peform straight line detection on this image, or detect the straight line image of this image. "
854
+ "The input to this tool should be a string, representing the image_path"),
855
+ Tool(name="Generate Image Condition On Line Image", func=self.line2image.inference,
856
+ description="useful when you want to generate a new real image from both the user desciption and a straight line image. like: generate a real image of a object or something from this straight line image, or generate a new real image of a object or something from this straight lines. "
857
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description. "),
858
+ Tool(name="Hed Detection On Image", func=self.image2hed.inference,
859
+ description="useful when you want to detect the soft hed boundary of the image. like: detect the soft hed boundary of this image, or hed boundary detection on image, or peform hed boundary detection on this image, or detect soft hed boundary image of this image. "
860
+ "The input to this tool should be a string, representing the image_path"),
861
+ Tool(name="Generate Image Condition On Soft Hed Boundary Image", func=self.hed2image.inference,
862
+ description="useful when you want to generate a new real image from both the user desciption and a soft hed boundary image. like: generate a real image of a object or something from this soft hed boundary image, or generate a new real image of a object or something from this hed boundary. "
863
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
864
+ Tool(name="Segmentation On Image", func=self.image2seg.inference,
865
+ description="useful when you want to detect segmentations of the image. like: segment this image, or generate segmentations on this image, or peform segmentation on this image. "
866
+ "The input to this tool should be a string, representing the image_path"),
867
+ Tool(name="Generate Image Condition On Segmentations", func=self.seg2image.inference,
868
+ description="useful when you want to generate a new real image from both the user desciption and segmentations. like: generate a real image of a object or something from this segmentation image, or generate a new real image of a object or something from these segmentations. "
869
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
870
+ Tool(name="Predict Depth On Image", func=self.image2depth.inference,
871
+ description="useful when you want to detect depth of the image. like: generate the depth from this image, or detect the depth map on this image, or predict the depth for this image. "
872
+ "The input to this tool should be a string, representing the image_path"),
873
+ Tool(name="Generate Image Condition On Depth", func=self.depth2image.inference,
874
+ description="useful when you want to generate a new real image from both the user desciption and depth image. like: generate a real image of a object or something from this depth image, or generate a new real image of a object or something from the depth map. "
875
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
876
+ Tool(name="Predict Normal Map On Image", func=self.image2normal.inference,
877
+ description="useful when you want to detect norm map of the image. like: generate normal map from this image, or predict normal map of this image. "
878
+ "The input to this tool should be a string, representing the image_path"),
879
+ Tool(name="Generate Image Condition On Normal Map", func=self.normal2image.inference,
880
+ description="useful when you want to generate a new real image from both the user desciption and normal map. like: generate a real image of a object or something from this normal map, or generate a new real image of a object or something from the normal map. "
881
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
882
+ Tool(name="Sketch Detection On Image", func=self.image2scribble.inference,
883
+ description="useful when you want to generate a scribble of the image. like: generate a scribble of this image, or generate a sketch from this image, detect the sketch from this image. "
884
+ "The input to this tool should be a string, representing the image_path"),
885
+ Tool(name="Generate Image Condition On Sketch Image", func=self.scribble2image.inference,
886
+ description="useful when you want to generate a new real image from both the user desciption and a scribble image or a sketch image. "
887
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description"),
888
+ Tool(name="Pose Detection On Image", func=self.image2pose.inference,
889
+ description="useful when you want to detect the human pose of the image. like: generate human poses of this image, or generate a pose image from this image. "
890
+ "The input to this tool should be a string, representing the image_path"),
891
+ Tool(name="Generate Image Condition On Pose Image", func=self.pose2image.inference,
892
+ description="useful when you want to generate a new real image from both the user desciption and a human pose image. like: generate a real image of a human from this human pose image, or generate a new real image of a human from this pose. "
893
+ "The input to this tool should be a comma seperated string of two, representing the image_path and the user description")]
894
+ self.agent = initialize_agent(
895
+ self.tools,
896
+ self.llm,
897
+ agent="conversational-react-description",
898
+ verbose=True,
899
+ memory=self.memory,
900
+ return_intermediate_steps=True,
901
+ agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': VISUAL_CHATGPT_SUFFIX}, )
902
+
903
+ def run_text(self, text, state):
904
+ print("===============Running run_text =============")
905
+ print("Inputs:", text, state)
906
+ print("======>Previous memory:\n %s" % self.agent.memory)
907
+ self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
908
+ res = self.agent({"input": text})
909
+ print("======>Current memory:\n %s" % self.agent.memory)
910
+ response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
911
+ state = state + [(text, response)]
912
+ print("Outputs:", state)
913
+ return state, state
914
+
915
+ def run_image(self, image, state, txt):
916
+ print("===============Running run_image =============")
917
+ print("Inputs:", image, state)
918
+ print("======>Previous memory:\n %s" % self.agent.memory)
919
+ image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
920
+ print("======>Auto Resize Image...")
921
+ img = Image.open(image.name)
922
+ width, height = img.size
923
+ ratio = min(512 / width, 512 / height)
924
+ width_new, height_new = (round(width * ratio), round(height * ratio))
925
+ img = img.resize((width_new, height_new))
926
+ img = img.convert('RGB')
927
+ img.save(image_filename, "PNG")
928
+ print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
929
+ description = self.i2t.inference(image_filename)
930
+ Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
931
+ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
932
+ AI_prompt = "Received. "
933
+ self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
934
+ print("======>Current memory:\n %s" % self.agent.memory)
935
+ state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
936
+ print("Outputs:", state)
937
+ return state, state, txt + ' ' + image_filename + ' '
938
+
939
+ if __name__ == '__main__':
940
+ bot = ConversationBot()
941
+ with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo:
942
+ chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT")
943
+ state = gr.State([])
944
+ with gr.Row():
945
+ with gr.Column(scale=0.7):
946
+ txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
947
+ with gr.Column(scale=0.15, min_width=0):
948
+ clear = gr.Button("Clear️")
949
+ with gr.Column(scale=0.15, min_width=0):
950
+ btn = gr.UploadButton("Upload", file_types=["image"])
951
+
952
+ txt.submit(bot.run_text, [txt, state], [chatbot, state])
953
+ txt.submit(lambda: "", None, txt)
954
+ btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt])
955
+ clear.click(bot.memory.clear)
956
+ clear.click(lambda: [], None, chatbot)
957
+ clear.click(lambda: [], None, state)
958
+ demo.launch(server_name="0.0.0.0", server_port=7860)