Spaces:
Runtime error
Runtime error
from transformers import LlamaTokenizer | |
from sentencepiece import sentencepiece_model_pb2 as model | |
import sentencepiece as sp | |
import argparse | |
import os | |
if __name__ == '__main__': | |
# Load arguments | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--load_path', default='../src/models/base_model/chinese_llama_7b/tokenizer_chinese.model', type=str) | |
parser.add_argument('--save_dir', default='../src/models/base_model/save_chinese', type=str) | |
parser.add_argument('--voc_path', default='../data/vocabulary/legal_vocab_processed.txt', type=str) | |
args = parser.parse_args() | |
LOAD_PATH = args.load_path | |
SAVE_DIR = args.save_dir | |
VOC_PATH = args.voc_path | |
# Load pre-trained llama tokenizer and sentencepiece model | |
llama_spm = model.ModelProto() | |
llama_spm.ParseFromString(open(LOAD_PATH, "rb").read()) | |
# show size of llama's vocabulary | |
llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces) | |
print(f"Size of initial llama's vocabulary: {len(llama_spm_tokens_set)}") | |
# Load custom vocabulary | |
new_tokens = open(VOC_PATH, "r").read().split("\n") | |
for token in new_tokens: | |
if token not in llama_spm_tokens_set: | |
new_token = model.ModelProto().SentencePiece() | |
new_token.piece = token | |
new_token.score = 0 | |
llama_spm.pieces.append(new_token) | |
print(f"Size of merged llama's vocabulary: {len(llama_spm.pieces)}") | |
# save | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
SAVE_MODEL_PATH = os.path.join(SAVE_DIR, 'tokenizer.model') | |
SAVE_VOCAB_PATH = os.path.join(SAVE_DIR, 'tokenizer.vocab') | |
with open(SAVE_MODEL_PATH, 'wb') as f: | |
f.write(llama_spm.SerializeToString()) | |
with open(SAVE_VOCAB_PATH, 'w') as f: | |
f.writelines([f'{token.piece} {token.score}\n' for token in llama_spm.pieces]) | |
tokenizer = LlamaTokenizer(SAVE_MODEL_PATH) | |
tokenizer.save_pretrained(SAVE_DIR) | |
print(f'New llama tokenizer and spm has been saved to {SAVE_DIR}') | |
# test | |
llama_tokenizer_old = LlamaTokenizer.from_pretrained(LOAD_PATH) | |
llama_tokenizer_new = LlamaTokenizer.from_pretrained(SAVE_DIR) | |
text = '''登记错误赔偿责任登记等手续登记等手续生效登记机构和登记办法登记机构赔偿后登记机构应当提供登记收费问题''' | |
print(f'Size of old vocabulary: {llama_tokenizer_old.vocab_size}') | |
print(f'Size of new vocabulary: {llama_tokenizer_new.vocab_size}') | |
print('All special tokens and ids in new llama:') | |
print(llama_tokenizer_new.all_special_tokens) | |
print(llama_tokenizer_new.all_special_ids) | |
print(llama_tokenizer_new.special_tokens_map) | |
print(f'Text:\n{text}') | |
print(f'Tokenized by LLaMA tokenizer:\n {llama_tokenizer_old.tokenize(text)}') | |
print(f'Tokenized by NEW LLaMA tokenizer:\n {llama_tokenizer_new.tokenize(text)}') |