williamberman's picture
fix
bde23cb
raw
history blame
39.3 kB
import itertools
import os
import random
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
import numpy as np
import safetensors.torch
import torch
import torch.nn.functional as F
import torchvision.transforms
import torchvision.transforms.functional as TF
from PIL import Image
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import default_collate
from transformers import (CLIPTextModel, CLIPTextModelWithProjection,
CLIPTokenizerFast)
from diffusion import (default_num_train_timesteps,
euler_ode_solver_diffusion_loop, make_sigmas)
from sdxl_models import (SDXLAdapter, SDXLControlNet, SDXLControlNetFull,
SDXLControlNetPreEncodedControlnetCond, SDXLUNet,
SDXLVae)
class SDXLTraining:
text_encoder_one: CLIPTextModel
text_encoder_two: CLIPTextModelWithProjection
vae: SDXLVae
sigmas: torch.Tensor
unet: SDXLUNet
adapter: Optional[SDXLAdapter]
controlnet: Optional[Union[SDXLControlNet, SDXLControlNetFull]]
train_unet: bool
train_unet_up_blocks: bool
mixed_precision: Optional[torch.dtype]
timestep_sampling: Literal["uniform", "cubic"]
validation_images_logged: bool
log_validation_input_images_every_time: bool
get_sdxl_conditioning_images: Callable[[Image.Image], Dict[str, Any]]
def __init__(
self,
device,
train_unet,
get_sdxl_conditioning_images,
train_unet_up_blocks=False,
unet_resume_from=None,
controlnet_cls=None,
controlnet_resume_from=None,
adapter_cls=None,
adapter_resume_from=None,
mixed_precision=None,
timestep_sampling="uniform",
log_validation_input_images_every_time=True,
):
self.text_encoder_one = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", variant="fp16", torch_dtype=torch.float16)
self.text_encoder_one.to(device=device)
self.text_encoder_one.requires_grad_(False)
self.text_encoder_one.eval()
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2", variant="fp16", torch_dtype=torch.float16)
self.text_encoder_two.to(device=device)
self.text_encoder_two.requires_grad_(False)
self.text_encoder_two.eval()
self.vae = SDXLVae.load_fp16_fix(device=device)
self.vae.requires_grad_(False)
self.vae.eval()
self.sigmas = make_sigmas(device=device)
if train_unet:
if unet_resume_from is None:
self.unet = SDXLUNet.load_fp32(device=device)
else:
self.unet = SDXLUNet.load(unet_resume_from, device=device)
self.unet.requires_grad_(True)
self.unet.train()
self.unet = DDP(self.unet, device_ids=[device])
elif train_unet_up_blocks:
if unet_resume_from is None:
self.unet = SDXLUNet.load_fp32(device=device)
else:
self.unet = SDXLUNet.load_fp32(device=device, overrides=[unet_resume_from])
self.unet.requires_grad_(False)
self.unet.eval()
self.unet.up_blocks.requires_grad_(True)
self.unet.up_blocks.train()
self.unet = DDP(self.unet, device_ids=[device], find_unused_parameters=True)
else:
self.unet = SDXLUNet.load_fp16(device=device)
self.unet.requires_grad_(False)
self.unet.eval()
if controlnet_cls is not None:
if controlnet_resume_from is None:
self.controlnet = controlnet_cls.from_unet(self.unet)
self.controlnet.to(device)
else:
self.controlnet = controlnet_cls.load(controlnet_resume_from, device=device)
self.controlnet.train()
self.controlnet.requires_grad_(True)
# TODO add back
# controlnet.enable_gradient_checkpointing()
# TODO - should be able to remove find_unused_parameters. Comes from pre encoded controlnet
self.controlnet = DDP(self.controlnet, device_ids=[device], find_unused_parameters=True)
else:
self.controlnet = None
if adapter_cls is not None:
if adapter_resume_from is None:
self.adapter = adapter_cls()
self.adapter.to(device=device)
else:
self.adapter = adapter_cls.load(adapter_resume_from, device=device)
self.adapter.train()
self.adapter.requires_grad_(True)
self.adapter = DDP(self.adapter, device_ids=[device])
else:
self.adapter = None
self.mixed_precision = mixed_precision
self.timestep_sampling = timestep_sampling
self.validation_images_logged = False
self.log_validation_input_images_every_time = log_validation_input_images_every_time
self.get_sdxl_conditioning_images = get_sdxl_conditioning_images
self.train_unet = train_unet
self.train_unet_up_blocks = train_unet_up_blocks
def train_step(self, batch):
with torch.no_grad():
if isinstance(self.unet, DDP):
unet_dtype = self.unet.module.dtype
unet_device = self.unet.module.device
else:
unet_dtype = self.unet.dtype
unet_device = self.unet.device
micro_conditioning = batch["micro_conditioning"].to(device=unet_device)
image = batch["image"].to(self.vae.device, dtype=self.vae.dtype)
latents = self.vae.encode(image).to(dtype=unet_dtype)
text_input_ids_one = batch["text_input_ids_one"].to(self.text_encoder_one.device)
text_input_ids_two = batch["text_input_ids_two"].to(self.text_encoder_two.device)
encoder_hidden_states, pooled_encoder_hidden_states = sdxl_text_conditioning(self.text_encoder_one, self.text_encoder_two, text_input_ids_one, text_input_ids_two)
encoder_hidden_states = encoder_hidden_states.to(dtype=unet_dtype)
pooled_encoder_hidden_states = pooled_encoder_hidden_states.to(dtype=unet_dtype)
bsz = latents.shape[0]
if self.timestep_sampling == "uniform":
timesteps = torch.randint(0, default_num_train_timesteps, (bsz,), device=unet_device)
elif self.timestep_sampling == "cubic":
# Cubic sampling to sample a random timestep for each image
timesteps = torch.rand((bsz,), device=unet_device)
timesteps = (1 - timesteps**3) * default_num_train_timesteps
timesteps = timesteps.long()
timesteps = timesteps.clamp(0, default_num_train_timesteps - 1)
else:
assert False
sigmas_ = self.sigmas[timesteps].to(dtype=latents.dtype)
noise = torch.randn_like(latents)
noisy_latents = latents + noise * sigmas_
scaled_noisy_latents = noisy_latents / ((sigmas_**2 + 1) ** 0.5)
if "conditioning_image" in batch:
conditioning_image = batch["conditioning_image"].to(unet_device)
if self.controlnet is not None and isinstance(self.controlnet, SDXLControlNetPreEncodedControlnetCond):
controlnet_device = self.controlnet.module.device
controlnet_dtype = self.controlnet.module.dtype
conditioning_image = self.vae.encode(conditioning_image.to(self.vae.dtype)).to(device=controlnet_device, dtype=controlnet_dtype)
conditioning_image_mask = TF.resize(batch["conditioning_image_mask"], conditioning_image.shape[2:]).to(device=controlnet_device, dtype=controlnet_dtype)
conditioning_image = torch.concat((conditioning_image, conditioning_image_mask), dim=1)
with torch.autocast(
"cuda",
self.mixed_precision,
enabled=self.mixed_precision is not None,
):
down_block_additional_residuals = None
mid_block_additional_residual = None
add_to_down_block_inputs = None
add_to_output = None
if self.adapter is not None:
down_block_additional_residuals = self.adapter(conditioning_image)
if self.controlnet is not None:
controlnet_out = self.controlnet(
x_t=scaled_noisy_latents,
t=timesteps,
encoder_hidden_states=encoder_hidden_states,
micro_conditioning=micro_conditioning,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
controlnet_cond=conditioning_image,
)
down_block_additional_residuals = controlnet_out["down_block_res_samples"]
mid_block_additional_residual = controlnet_out["mid_block_res_sample"]
add_to_down_block_inputs = controlnet_out.get("add_to_down_block_inputs", None)
add_to_output = controlnet_out.get("add_to_output", None)
model_pred = self.unet(
x_t=scaled_noisy_latents,
t=timesteps,
encoder_hidden_states=encoder_hidden_states,
micro_conditioning=micro_conditioning,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
add_to_down_block_inputs=add_to_down_block_inputs,
add_to_output=add_to_output,
).sample
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
return loss
@torch.no_grad()
def log_validation(self, step, num_validation_images: int, validation_prompts: Optional[List[str]] = None, validation_images: Optional[List[str]] = None):
import wandb
if isinstance(self.unet, DDP):
unet = self.unet.module
unet.eval()
unet_set_to_eval = True
else:
unet = self.unet
unet_set_to_eval = False
if self.adapter is not None:
adapter = self.adapter.module
adapter.eval()
else:
adapter = None
if self.controlnet is not None:
controlnet = self.controlnet.module
controlnet.eval()
else:
controlnet = None
formatted_validation_images = None
if validation_images is not None:
formatted_validation_images = []
wandb_validation_images = []
for validation_image_path in validation_images:
validation_image = Image.open(validation_image_path)
validation_image = validation_image.convert("RGB")
validation_image = validation_image.resize((1024, 1024))
conditioning_images = self.get_sdxl_conditioning_images(validation_image)
conditioning_image = conditioning_images["conditioning_image"]
if self.controlnet is not None and isinstance(self.controlnet, SDXLControlNetPreEncodedControlnetCond):
conditioning_image = self.vae.encode(conditioning_image[None, :, :, :].to(self.vae.device, dtype=self.vae.dtype))
conditionin_mask_image = TF.resize(conditioning_images["conditioning_mask_image"], conditioning_image.shape[2:]).to(conditioning_image.dtype, conditioning_image.device)
conditioning_image = torch.concat(conditioning_image, conditionin_mask_image, dim=1)
formatted_validation_images.append(conditioning_image)
wandb_validation_images.append(wandb.Image(conditioning_images["conditioning_image_as_pil"]))
if self.log_validation_input_images_every_time or not self.validation_images_logged:
wandb.log({"validation_conditioning": wandb_validation_images}, step=step)
self.validation_images_logged = True
generator = torch.Generator().manual_seed(0)
output_validation_images = []
for formatted_validation_image, validation_prompt in zip(formatted_validation_images, validation_prompts):
for _ in range(num_validation_images):
with torch.autocast("cuda"):
x_0 = sdxl_diffusion_loop(
prompts=validation_prompt,
images=formatted_validation_image,
unet=unet,
text_encoder_one=self.text_encoder_one,
text_encoder_two=self.text_encoder_two,
controlnet=controlnet,
adapter=adapter,
sigmas=self.sigmas,
generator=generator,
)
x_0 = self.vae.decode(x_0)
x_0 = self.vae.output_tensor_to_pil(x_0)[0]
output_validation_images.append(wandb.Image(x_0, caption=validation_prompt))
wandb.log({"validation": output_validation_images}, step=step)
if unet_set_to_eval:
unet.train()
if adapter is not None:
adapter.train()
if controlnet is not None:
controlnet.train()
def parameters(self):
if self.train_unet:
return self.unet.parameters()
if self.controlnet is not None and self.train_unet_up_blocks:
return itertools.chain(self.controlnet.parameters(), self.unet.up_blocks.parameters())
if self.controlnet is not None:
return self.controlnet.parameters()
if self.adapter is not None:
return self.adapter.parameters()
assert False
def save(self, save_to):
if self.train_unet:
safetensors.torch.save_file(self.unet.module.state_dict(), os.path.join(save_to, "unet.safetensors"))
if self.controlnet is not None and self.train_unet_up_blocks:
safetensors.torch.save_file(self.controlnet.module.state_dict(), os.path.join(save_to, "controlnet.safetensors"))
safetensors.torch.save_file(self.unet.module.up_blocks.state_dict(), os.path.join(save_to, "unet.safetensors"))
if self.controlnet is not None:
safetensors.torch.save_file(self.controlnet.module.state_dict(), os.path.join(save_to, "controlnet.safetensors"))
if self.adapter is not None:
safetensors.torch.save_file(self.adapter.module.state_dict(), os.path.join(save_to, "adapter.safetensors"))
def get_sdxl_dataset(train_shards: str, shuffle_buffer_size: int, batch_size: int, proportion_empty_prompts: float, get_sdxl_conditioning_images=None):
import webdataset as wds
dataset = (
wds.WebDataset(
train_shards,
resampled=True,
handler=wds.ignore_and_continue,
)
.shuffle(shuffle_buffer_size)
.decode("pil", handler=wds.ignore_and_continue)
.rename(
image="jpg;png;jpeg;webp",
text="text;txt;caption",
metadata="json",
handler=wds.warn_and_continue,
)
.map(lambda d: make_sample(d, proportion_empty_prompts=proportion_empty_prompts, get_sdxl_conditioning_images=get_sdxl_conditioning_images))
.select(lambda sample: "conditioning_image" not in sample or sample["conditioning_image"] is not None)
)
dataset = dataset.batched(batch_size, partial=False, collation_fn=default_collate)
return dataset
@torch.no_grad()
def make_sample(d, proportion_empty_prompts, get_sdxl_conditioning_images=None):
image = d["image"]
metadata = d["metadata"]
if random.random() < proportion_empty_prompts:
text = ""
else:
text = d["text"]
c_top, c_left, _, _ = get_random_crop_params([image.height, image.width], [1024, 1024])
original_width = int(metadata.get("original_width", 0.0))
original_height = int(metadata.get("original_height", 0.0))
micro_conditioning = torch.tensor([original_width, original_height, c_top, c_left, 1024, 1024])
text_input_ids_one = sdxl_tokenize_one(text)[0]
text_input_ids_two = sdxl_tokenize_two(text)[0]
image = image.convert("RGB")
image = TF.resize(
image,
1024,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
)
image = TF.crop(
image,
c_top,
c_left,
1024,
1024,
)
sample = {
"micro_conditioning": micro_conditioning,
"text_input_ids_one": text_input_ids_one,
"text_input_ids_two": text_input_ids_two,
"image": SDXLVae.input_pil_to_tensor(image),
}
if get_sdxl_conditioning_images is not None:
conditioning_images = get_sdxl_conditioning_images(image)
sample["conditioning_image"] = conditioning_images["conditioning_image"]
if conditioning_images["conditioning_image_mask"] is not None:
sample["conditioning_image_mask"] = conditioning_images["conditioning_image_mask"]
return sample
def get_random_crop_params(input_size: Tuple[int, int], output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
h, w = input_size
th, tw = output_size
if h < th or w < tw:
raise ValueError(f"Required crop size {(th, tw)} is larger than input image size {(h, w)}")
if w == tw and h == th:
return 0, 0, h, w
i = torch.randint(0, h - th + 1, size=(1,)).item()
j = torch.randint(0, w - tw + 1, size=(1,)).item()
return i, j, th, tw
def get_adapter_openpose_conditioning_image(image, open_pose):
resolution = image.width
conditioning_image = open_pose(image, detect_resolution=resolution, image_resolution=resolution, return_pil=False)
if (conditioning_image == 0).all():
return None, None
conditioning_image_as_pil = Image.fromarray(conditioning_image)
conditioning_image = TF.to_tensor(conditioning_image)
return dict(conditioning_image=conditioning_image, conditioning_image_as_pil=conditioning_image_as_pil)
def get_controlnet_canny_conditioning_image(image):
import cv2
conditioning_image = np.array(image)
conditioning_image = cv2.Canny(conditioning_image, 100, 200)
conditioning_image = conditioning_image[:, :, None]
conditioning_image = np.concatenate([conditioning_image, conditioning_image, conditioning_image], axis=2)
conditioning_image_as_pil = Image.fromarray(conditioning_image)
conditioning_image = TF.to_tensor(conditioning_image)
return dict(conditioning_image=conditioning_image, conditioning_image_as_pil=conditioning_image_as_pil)
def get_controlnet_pre_encoded_controlnet_inpainting_conditioning_image(image, conditioning_image_mask):
resolution = image.width
if conditioning_image_mask is None:
if random.random() <= 0.25:
conditioning_image_mask = np.ones((resolution, resolution), np.float32)
else:
conditioning_image_mask = random.choice([make_random_rectangle_mask, make_random_irregular_mask, make_outpainting_mask])(resolution, resolution)
conditioning_image_mask = torch.from_numpy(conditioning_image_mask)
conditioning_image_mask = conditioning_image_mask[None, :, :]
conditioning_image = TF.to_tensor(image)
# where mask is 1, zero out the pixels. Note that this requires mask to be concattenated
# with the mask so that the network knows the zeroed out pixels are from the mask and
# are not just zero in the original image
conditioning_image = conditioning_image * (conditioning_image_mask < 0.5)
conditioning_image_as_pil = TF.to_pil_image(conditioning_image)
conditioning_image = TF.normalize(conditioning_image, [0.5], [0.5])
return dict(conditioning_image=conditioning_image, conditioning_image_mask=conditioning_image_mask, conditioning_image_as_pil=conditioning_image_as_pil)
def get_controlnet_inpainting_conditioning_image(image, conditioning_image_mask):
resolution = image.width
if conditioning_image_mask is None:
if random.random() <= 0.25:
conditioning_image_mask = np.ones((resolution, resolution), np.float32)
else:
conditioning_image_mask = random.choice([make_random_rectangle_mask, make_random_irregular_mask, make_outpainting_mask])(resolution, resolution)
conditioning_image_mask = torch.from_numpy(conditioning_image_mask)
conditioning_image_mask = conditioning_image_mask[None, :, :]
conditioning_image = TF.to_tensor(image)
# Just zero out the pixels which will be masked
conditioning_image_as_pil = TF.to_pil_image(conditioning_image * (conditioning_image_mask < 0.5))
# where mask is set to 1, set to -1 "special" masked image pixel.
# -1 is outside of the 0-1 range that the controlnet normalized
# input is in.
conditioning_image = conditioning_image * (conditioning_image_mask < 0.5) + -1.0 * (conditioning_image_mask >= 0.5)
return dict(conditioning_image=conditioning_image, conditioning_image_mask=conditioning_image_mask, conditioning_image_as_pil=conditioning_image_as_pil)
# TODO: would be nice to just call a function from a tokenizers https://github.com/huggingface/tokenizers
# i.e. afaik tokenizing shouldn't require holding any state
tokenizer_one = CLIPTokenizerFast.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer")
tokenizer_two = CLIPTokenizerFast.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer_2")
def sdxl_tokenize_one(prompts):
return tokenizer_one(
prompts,
padding="max_length",
max_length=tokenizer_one.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def sdxl_tokenize_two(prompts):
return tokenizer_two(
prompts,
padding="max_length",
max_length=tokenizer_one.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def sdxl_text_conditioning(text_encoder_one, text_encoder_two, text_input_ids_one, text_input_ids_two):
prompt_embeds_1 = text_encoder_one(
text_input_ids_one,
output_hidden_states=True,
).hidden_states[-2]
prompt_embeds_1 = prompt_embeds_1.view(prompt_embeds_1.shape[0], prompt_embeds_1.shape[1], -1)
prompt_embeds_2 = text_encoder_two(
text_input_ids_two,
output_hidden_states=True,
)
pooled_encoder_hidden_states = prompt_embeds_2[0]
prompt_embeds_2 = prompt_embeds_2.hidden_states[-2]
prompt_embeds_2 = prompt_embeds_2.view(prompt_embeds_2.shape[0], prompt_embeds_2.shape[1], -1)
encoder_hidden_states = torch.cat((prompt_embeds_1, prompt_embeds_2), dim=-1)
return encoder_hidden_states, pooled_encoder_hidden_states
def make_random_rectangle_mask(
height,
width,
margin=10,
bbox_min_size=100,
bbox_max_size=512,
min_times=1,
max_times=2,
):
mask = np.zeros((height, width), np.float32)
bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2)
times = np.random.randint(min_times, max_times + 1)
for i in range(times):
box_width = np.random.randint(bbox_min_size, bbox_max_size)
box_height = np.random.randint(bbox_min_size, bbox_max_size)
start_x = np.random.randint(margin, width - margin - box_width + 1)
start_y = np.random.randint(margin, height - margin - box_height + 1)
mask[start_y : start_y + box_height, start_x : start_x + box_width] = 1
return mask
def make_random_irregular_mask(height, width, max_angle=4, max_len=60, max_width=256, min_times=1, max_times=2):
import cv2
mask = np.zeros((height, width), np.float32)
times = np.random.randint(min_times, max_times + 1)
for i in range(times):
start_x = np.random.randint(width)
start_y = np.random.randint(height)
for j in range(1 + np.random.randint(5)):
angle = 0.01 + np.random.randint(max_angle)
if i % 2 == 0:
angle = 2 * 3.1415926 - angle
length = 10 + np.random.randint(max_len)
brush_w = 5 + np.random.randint(max_width)
end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width)
end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height)
choice = random.randint(0, 2)
if choice == 0:
cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w)
elif choice == 1:
cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1.0, thickness=-1)
elif choice == 2:
radius = brush_w // 2
mask[
start_y - radius : start_y + radius,
start_x - radius : start_x + radius,
] = 1
else:
assert False
start_x, start_y = end_x, end_y
return mask
def make_outpainting_mask(height, width, probs=[0.5, 0.5, 0.5, 0.5]):
mask = np.zeros((height, width), np.float32)
at_least_one_mask_applied = False
coords = [
[(0, 0), (1, get_padding(height))],
[(0, 0), (get_padding(width), 1)],
[(0, 1 - get_padding(height)), (1, 1)],
[(1 - get_padding(width), 0), (1, 1)],
]
for pp, coord in zip(probs, coords):
if np.random.random() < pp:
at_least_one_mask_applied = True
mask = apply_padding(mask=mask, coord=coord)
if not at_least_one_mask_applied:
idx = np.random.choice(range(len(coords)), p=np.array(probs) / sum(probs))
mask = apply_padding(mask=mask, coord=coords[idx])
return mask
def get_padding(size, min_padding_percent=0.04, max_padding_percent=0.5):
n1 = int(min_padding_percent * size)
n2 = int(max_padding_percent * size)
return np.random.randint(n1, n2) / size
def apply_padding(mask, coord):
height, width = mask.shape
mask[
int(coord[0][0] * height) : int(coord[1][0] * height),
int(coord[0][1] * width) : int(coord[1][1] * width),
] = 1
return mask
@torch.no_grad()
def sdxl_diffusion_loop(
prompts: Union[str, List[str]],
unet,
text_encoder_one,
text_encoder_two,
images=None,
controlnet=None,
adapter=None,
sigmas=None,
timesteps=None,
x_T=None,
micro_conditioning=None,
guidance_scale=5.0,
generator=None,
negative_prompts=None,
diffusion_loop=euler_ode_solver_diffusion_loop,
):
if isinstance(prompts, str):
prompts = [prompts]
batch_size = len(prompts)
if negative_prompts is not None and guidance_scale > 1.0:
prompts += negative_prompts
encoder_hidden_states, pooled_encoder_hidden_states = sdxl_text_conditioning(
text_encoder_one,
text_encoder_two,
sdxl_tokenize_one(prompts).to(text_encoder_one.device),
sdxl_tokenize_two(prompts).to(text_encoder_two.device),
)
encoder_hidden_states = encoder_hidden_states.to(unet.dtype)
pooled_encoder_hidden_states = pooled_encoder_hidden_states.to(unet.dtype)
if guidance_scale > 1.0:
if negative_prompts is None:
negative_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
negative_pooled_encoder_hidden_states = torch.zeros_like(pooled_encoder_hidden_states)
else:
encoder_hidden_states, negative_encoder_hidden_states = torch.chunk(encoder_hidden_states, 2)
pooled_encoder_hidden_states, negative_pooled_encoder_hidden_states = torch.chunk(pooled_encoder_hidden_states, 2)
else:
negative_encoder_hidden_states = None
negative_pooled_encoder_hidden_states = None
if sigmas is None:
sigmas = make_sigmas(device=unet.device)
if timesteps is None:
timesteps = torch.linspace(0, sigmas.numel() - 1, 50, dtype=torch.long, device=unet.device)
if x_T is None:
x_T = torch.randn((batch_size, 4, 1024 // 8, 1024 // 8), dtype=unet.dtype, device=unet.device, generator=generator)
x_T = x_T * ((sigmas[timesteps[-1]] ** 2 + 1) ** 0.5)
if micro_conditioning is None:
micro_conditioning = torch.tensor([[1024, 1024, 0, 0, 1024, 1024]], dtype=torch.long, device=unet.device)
micro_conditioning = micro_conditioning.expand(batch_size, -1)
if adapter is not None:
down_block_additional_residuals = adapter(images.to(dtype=adapter.dtype, device=adapter.device))
else:
down_block_additional_residuals = None
if controlnet is not None:
controlnet_cond = images.to(dtype=controlnet.dtype, device=controlnet.device)
else:
controlnet_cond = None
eps_theta = lambda *args, **kwargs: sdxl_eps_theta(
*args,
**kwargs,
unet=unet,
encoder_hidden_states=encoder_hidden_states,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
negative_encoder_hidden_states=negative_encoder_hidden_states,
negative_pooled_encoder_hidden_states=negative_pooled_encoder_hidden_states,
micro_conditioning=micro_conditioning,
guidance_scale=guidance_scale,
controlnet=controlnet,
controlnet_cond=controlnet_cond,
down_block_additional_residuals=down_block_additional_residuals,
)
x_0 = diffusion_loop(eps_theta=eps_theta, timesteps=timesteps, sigmas=sigmas, x_T=x_T)
return x_0
@torch.no_grad()
def sdxl_eps_theta(
x_t,
t,
sigma,
unet,
encoder_hidden_states,
pooled_encoder_hidden_states,
negative_encoder_hidden_states,
negative_pooled_encoder_hidden_states,
micro_conditioning,
guidance_scale,
controlnet=None,
controlnet_cond=None,
down_block_additional_residuals=None,
):
# TODO - how does this not effect the ode we are solving
scaled_x_t = x_t / ((sigma**2 + 1) ** 0.5)
if guidance_scale > 1.0:
scaled_x_t = torch.concat([scaled_x_t, scaled_x_t])
encoder_hidden_states = torch.concat((encoder_hidden_states, negative_encoder_hidden_states))
pooled_encoder_hidden_states = torch.concat((pooled_encoder_hidden_states, negative_pooled_encoder_hidden_states))
micro_conditioning = torch.concat([micro_conditioning, micro_conditioning])
if controlnet_cond is not None:
controlnet_cond = torch.concat([controlnet_cond, controlnet_cond])
if controlnet is not None:
controlnet_out = controlnet(
x_t=scaled_x_t.to(controlnet.dtype),
t=t,
encoder_hidden_states=encoder_hidden_states.to(controlnet.dtype),
micro_conditioning=micro_conditioning.to(controlnet.dtype),
pooled_encoder_hidden_states=pooled_encoder_hidden_states.to(controlnet.dtype),
controlnet_cond=controlnet_cond,
)
down_block_additional_residuals = [x.to(unet.dtype) for x in controlnet_out["down_block_res_samples"]]
mid_block_additional_residual = controlnet_out["mid_block_res_sample"].to(unet.dtype)
add_to_down_block_inputs = controlnet_out.get("add_to_down_block_inputs", None)
if add_to_down_block_inputs is not None:
add_to_down_block_inputs = [x.to(unet.dtype) for x in add_to_down_block_inputs]
add_to_output = controlnet_out.get("add_to_output", None)
if add_to_output is not None:
add_to_output = add_to_output.to(unet.dtype)
else:
mid_block_additional_residual = None
add_to_down_block_inputs = None
add_to_output = None
eps_hat = unet(
x_t=scaled_x_t,
t=t,
encoder_hidden_states=encoder_hidden_states,
micro_conditioning=micro_conditioning,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
add_to_down_block_inputs=add_to_down_block_inputs,
add_to_output=add_to_output,
)
if guidance_scale > 1.0:
eps_hat, eps_hat_uncond = eps_hat.chunk(2)
eps_hat = eps_hat_uncond + guidance_scale * (eps_hat - eps_hat_uncond)
return eps_hat
known_negative_prompt = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast"
if __name__ == "__main__":
from argparse import ArgumentParser
args = ArgumentParser()
args.add_argument("--prompts", required=True, type=str, nargs="+")
args.add_argument("--negative_prompts", required=False, type=str, nargs="+")
args.add_argument("--use_known_negative_prompt", action="store_true")
args.add_argument("--num_images_per_prompt", required=True, type=int, default=1)
args.add_argument("--num_inference_steps", required=False, type=int, default=50)
args.add_argument("--images", required=False, type=str, default=None, nargs="+")
args.add_argument("--masks", required=False, type=str, default=None, nargs="+")
args.add_argument("--controlnet_checkpoint", required=False, type=str, default=None)
args.add_argument("--controlnet", required=False, choices=["SDXLControlNet", "SDXLControlNetFull", "SDXLControNetPreEncodedControlnetCond"], default=None)
args.add_argument("--adapter_checkpoint", required=False, type=str, default=None)
args.add_argument("--device", required=False, default=None)
args.add_argument("--dtype", required=False, default="fp16", choices=["fp16", "fp32"])
args.add_argument("--guidance_scale", required=False, default=5.0, type=float)
args.add_argument("--seed", required=False, type=int)
args = args.parse_args()
if args.device is None:
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
if args.dtype == "fp16":
dtype = torch.float16
text_encoder_one = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", variant="fp16", torch_dtype=torch.float16)
text_encoder_one.to(device=device)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2", variant="fp16", torch_dtype=torch.float16)
text_encoder_two.to(device=device)
vae = SDXLVae.load_fp16_fix(device=device)
vae.to(torch.float16)
unet = SDXLUNet.load_fp16(device=device)
elif args.dtype == "fp32":
dtype = torch.float32
text_encoder_one = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
text_encoder_one.to(device=device)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2")
text_encoder_two.to(device=device)
vae = SDXLVae.load_fp16_fix(device=device)
unet = SDXLUNet.load_fp32(device=device)
else:
assert False
if args.controlnet == "SDXLControlNet":
controlnet = SDXLControlNet.load(args.controlnet_checkpoint, device=device)
controlnet.to(dtype)
elif args.controlnet == "SDXLControlNetFull":
controlnet = SDXLControlNetFull.load(args.controlnet_checkpoint, device=device)
controlnet.to(dtype)
elif args.controlnet == "SDXLControlNetPreEncodedControlnetCond":
controlnet = SDXLControlNetPreEncodedControlnetCond.load(args.controlnet_checkpoint, device=device)
controlnet.to(dtype)
else:
controlnet = None
if args.adapter_checkpoint is not None:
adapter = SDXLAdapter.load(args.adapter_checkpoint, device=device)
adapter.to(dtype)
else:
adapter = None
sigmas = make_sigmas(device=device).to(unet.dtype)
timesteps = torch.linspace(0, sigmas.numel() - 1, args.num_inference_steps, dtype=torch.long, device=unet.device)
prompts = []
for prompt in args.prompts:
prompts += [prompt] * args.num_images_per_prompt
if args.use_known_negative_prompt:
args.negative_prompts = [known_negative_prompt]
if args.negative_prompts is None:
negative_prompts = None
elif len(args.negative_prompts) == 1:
negative_prompts = args.negative_prompts * len(prompts)
elif len(args.negative_prompts) == len(args.prompts):
negative_prompts = []
for negative_prompt in args.negative_prompts:
negative_prompts += [negative_prompt] * args.num_images_per_prompt
else:
assert False
if args.images is not None:
images = []
for image_idx, image in enumerate(args.images):
image = Image.open(image)
image = image.convert("RGB")
image = image.resize((1024, 1024))
image = TF.to_tensor(image)
if args.masks is not None:
mask = args.masks[image_idx]
mask = Image.open(mask)
mask = mask.convert("L")
mask = mask.resize((1024, 1024))
mask = TF.to_tensor(mask)
if isinstance(controlnet, SDXLControlNetPreEncodedControlnetCond):
image = image * (mask < 0.5)
image = TF.normalize(image, [0.5], [0.5])
image = vae.encode(image[None, :, :, :].to(dtype=vae.dtype, device=vae.device)).to(dtype=controlnet.dtype, device=controlnet.device)
mask = TF.resize(mask, (1024 // 8, 1024 // 8))[None, :, :, :].to(dtype=image.dtype, device=image.device)
image = torch.concat((image, mask), dim=1)
else:
image = (image * (mask < 0.5) + -1.0 * (mask >= 0.5)).to(dtype=dtype, device=device)
image = image[None, :, :, :]
images += [image] * args.num_images_per_prompt
images = torch.concat(images)
else:
images = None
if args.seed is None:
generator = None
else:
generator = torch.Generator(device).manual_seed(args.seed)
images = sdxl_diffusion_loop(
prompts=prompts,
unet=unet,
text_encoder_one=text_encoder_one,
text_encoder_two=text_encoder_two,
images=images,
controlnet=controlnet,
adapter=adapter,
sigmas=sigmas,
timesteps=timesteps,
guidance_scale=args.guidance_scale,
negative_prompts=negative_prompts,
generator=generator,
)
images = vae.output_tensor_to_pil(vae.decode(images))
for i, image in enumerate(images):
image.save(f"out_{i}.png")