Spaces:
Sleeping
Sleeping
william4416
commited on
Commit
•
85d3e5e
1
Parent(s):
0944d81
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
-
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
import json
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
7 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
8 |
|
9 |
-
|
|
|
10 |
# tokenize the new input sentence
|
11 |
new_user_input_ids = tokenizer.encode(
|
12 |
-
|
13 |
)
|
14 |
|
15 |
# append the new user input tokens to the chat history
|
16 |
-
bot_input_ids = torch.cat([torch.LongTensor(
|
17 |
|
18 |
# generate a response
|
19 |
history = model.generate(
|
@@ -21,13 +19,15 @@ def predict(input_text, state=[]):
|
|
21 |
).tolist()
|
22 |
|
23 |
# convert the tokens to text, and then split the responses into lines
|
24 |
-
response = tokenizer.decode(history[0]).split("
|
|
|
25 |
response = [
|
26 |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
27 |
] # convert to tuples of list
|
|
|
28 |
return response, history
|
29 |
|
30 |
-
def read_json_file(file_path):
|
31 |
with open(file_path, 'r') as file:
|
32 |
data = json.load(file)
|
33 |
return data
|
@@ -46,15 +46,14 @@ def main():
|
|
46 |
if __name__ == "__main__":
|
47 |
main()
|
48 |
|
49 |
-
|
50 |
-
description = "This AI chatbot can respond to your queries using a DialoGPT-based model and additional learned responses."
|
51 |
-
examples = [["Hello, how are you?"], ["What is the weather today?"]]
|
52 |
|
53 |
gr.Interface(
|
54 |
fn=predict,
|
55 |
title=title,
|
56 |
description=description,
|
57 |
-
|
58 |
-
|
|
|
59 |
theme="finlaymacklon/boxy_violet",
|
60 |
-
).launch()
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
2 |
|
3 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
4 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
5 |
|
6 |
+
|
7 |
+
def predict(input, history=[]):
|
8 |
# tokenize the new input sentence
|
9 |
new_user_input_ids = tokenizer.encode(
|
10 |
+
input + tokenizer.eos_token, return_tensors="pt"
|
11 |
)
|
12 |
|
13 |
# append the new user input tokens to the chat history
|
14 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
15 |
|
16 |
# generate a response
|
17 |
history = model.generate(
|
|
|
19 |
).tolist()
|
20 |
|
21 |
# convert the tokens to text, and then split the responses into lines
|
22 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
23 |
+
# print('decoded_response-->>'+str(response))
|
24 |
response = [
|
25 |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
26 |
] # convert to tuples of list
|
27 |
+
# print('response-->>'+str(response))
|
28 |
return response, history
|
29 |
|
30 |
+
def read_json_file(file_path): #read json file test
|
31 |
with open(file_path, 'r') as file:
|
32 |
data = json.load(file)
|
33 |
return data
|
|
|
46 |
if __name__ == "__main__":
|
47 |
main()
|
48 |
|
49 |
+
|
|
|
|
|
50 |
|
51 |
gr.Interface(
|
52 |
fn=predict,
|
53 |
title=title,
|
54 |
description=description,
|
55 |
+
examples=examples,
|
56 |
+
inputs=["text", "state"],
|
57 |
+
outputs=["chatbot", "state"],
|
58 |
theme="finlaymacklon/boxy_violet",
|
59 |
+
).launch()
|