Spaces:
Sleeping
Sleeping
willco-afk
commited on
Commit
•
d8a9872
1
Parent(s):
9a3fd03
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,53 @@
|
|
1 |
-
Hugging Face's logo
|
2 |
-
Hugging Face
|
3 |
-
|
4 |
-
Models
|
5 |
-
Datasets
|
6 |
-
Spaces
|
7 |
-
Docs
|
8 |
-
Enterprise
|
9 |
-
Pricing
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
Spaces:
|
15 |
-
|
16 |
-
|
17 |
-
willco-afk
|
18 |
-
/
|
19 |
-
tree-tests
|
20 |
-
|
21 |
-
like
|
22 |
-
0
|
23 |
-
|
24 |
-
App
|
25 |
-
|
26 |
-
Files
|
27 |
-
Community
|
28 |
-
Settings
|
29 |
-
tree-tests
|
30 |
-
/
|
31 |
-
app.py
|
32 |
-
|
33 |
-
willco-afk's picture
|
34 |
-
willco-afk
|
35 |
-
Update app.py
|
36 |
-
8ef1729
|
37 |
-
VERIFIED
|
38 |
-
4 minutes ago
|
39 |
-
raw
|
40 |
-
|
41 |
-
Copy download link
|
42 |
-
history
|
43 |
-
blame
|
44 |
-
edit
|
45 |
-
delete
|
46 |
-
|
47 |
-
1 kB
|
48 |
-
import streamlit as st
|
49 |
-
import numpy as np
|
50 |
-
import tensorflow as tf
|
51 |
-
from PIL import Image
|
52 |
import os
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from google.cloud import storage
|
4 |
+
from keras.models import load_model
|
5 |
+
import tempfile
|
6 |
+
import numpy as np
|
7 |
+
from pydantic import BaseModel
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Function to load the model from Google Cloud Storage
|
12 |
+
def load_model_from_gcs(model_path):
|
13 |
+
client = storage.Client()
|
14 |
+
bucket = client.get_bucket('tree-decorator-model') # Your bucket name
|
15 |
+
blob = bucket.blob(model_path) # Path to your model in the bucket
|
16 |
+
|
17 |
+
# Save the model file locally in a temporary file
|
18 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
19 |
+
blob.download_to_filename(temp_file.name) # Download model to temporary file
|
20 |
+
model = load_model(temp_file.name) # Load model from the temporary file
|
21 |
+
|
22 |
+
return model
|
23 |
+
|
24 |
+
# Load the model from Google Cloud Storage (provide the path to your model in the bucket)
|
25 |
+
model = load_model_from_gcs('models/your_trained_model.keras') # Path in GCS
|
26 |
+
|
27 |
+
# Pydantic model for the incoming prediction request (adjust as needed)
|
28 |
+
class ImageData(BaseModel):
|
29 |
+
image: str # Base64-encoded image or URL of the image (you can adjust this)
|
30 |
+
|
31 |
+
@app.get("/")
|
32 |
+
def read_root():
|
33 |
+
return {"message": "Welcome to the Tree Decorator API!"}
|
34 |
+
|
35 |
+
@app.post("/predict/")
|
36 |
+
async def predict(data: ImageData):
|
37 |
+
# Example: Decode the image, preprocess it, and use the model for prediction
|
38 |
+
# Decode and preprocess the image data as required (e.g., using Pillow, OpenCV, etc.)
|
39 |
+
|
40 |
+
# For simplicity, we'll assume 'data.image' is already preprocessed or passed in an acceptable format
|
41 |
+
|
42 |
+
# Example prediction (replace with actual image processing and prediction logic)
|
43 |
+
# prediction = model.predict(processed_image)
|
44 |
+
|
45 |
+
# Dummy response for demonstration
|
46 |
+
prediction = {"prediction": "decorated" if np.random.random() > 0.5 else "not decorated"}
|
47 |
+
|
48 |
+
return prediction
|
49 |
+
|
50 |
+
# Run the FastAPI app
|
51 |
+
if __name__ == "__main__":
|
52 |
+
import uvicorn
|
53 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 8080)))
|